Gen2 RGB相机上的空间对象跟踪器

本示例说明如何在RGB输入帧上运行MobileNetv2SSD,以及如何对人员执行空间对象跟踪。

演示

设置

Warning

说明:此处安装的是第二代depthai库

请运行以下命令来安装所需的依赖项

python3 -m pip install -U pip
python3 -m pip install opencv-python
python3 -m pip install -U --force-reinstall depthai

有关更多信息,请参阅 Python API 安装指南

这个示例还需要 mobileenetsdd blob ( mobilenet.blob 文件 )才能工作——您可以从 这里 下载它。

源代码

可以在 GitHub 上找到。国内用户也可以在 gitee 上找到。

#!/usr/bin/env python3

from pathlib import Path
import cv2
import depthai as dai
import numpy as np
import time
import argparse

labelMap = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow",
            "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]

nnPathDefault = str((Path(__file__).parent / Path('models/mobilenet-ssd_openvino_2021.2_6shave.blob')).resolve().absolute())
parser = argparse.ArgumentParser()
parser.add_argument('nnPath', nargs='?', help="Path to mobilenet detection network blob", default=nnPathDefault)
parser.add_argument('-ff', '--full_frame', action="store_true", help="Perform tracking on full RGB frame", default=False)

args = parser.parse_args()


fullFrameTracking = args.full_frame

# 开始定义管道
pipeline = dai.Pipeline()

colorCam = pipeline.createColorCamera()
spatialDetectionNetwork = pipeline.createMobileNetSpatialDetectionNetwork()
monoLeft = pipeline.createMonoCamera()
monoRight = pipeline.createMonoCamera()
stereo = pipeline.createStereoDepth()
objectTracker = pipeline.createObjectTracker()

xoutRgb = pipeline.createXLinkOut()
trackerOut = pipeline.createXLinkOut()

xoutRgb.setStreamName("preview")
trackerOut.setStreamName("tracklets")

colorCam.setPreviewSize(300, 300)
colorCam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
colorCam.setInterleaved(False)
colorCam.setColorOrder(dai.ColorCameraProperties.ColorOrder.BGR)

monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
monoLeft.setBoardSocket(dai.CameraBoardSocket.LEFT)
monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
monoRight.setBoardSocket(dai.CameraBoardSocket.RIGHT)

# 设置节点配置
stereo.setConfidenceThreshold(255)

spatialDetectionNetwork.setBlobPath(args.nnPath)
spatialDetectionNetwork.setConfidenceThreshold(0.5)
spatialDetectionNetwork.input.setBlocking(False)
spatialDetectionNetwork.setBoundingBoxScaleFactor(0.5)
spatialDetectionNetwork.setDepthLowerThreshold(100)
spatialDetectionNetwork.setDepthUpperThreshold(5000)

# 创建输出流

monoLeft.out.link(stereo.left)
monoRight.out.link(stereo.right)

# 连接插件 CAM . NN . XLINK
colorCam.preview.link(spatialDetectionNetwork.input)
objectTracker.passthroughTrackerFrame.link(xoutRgb.input)


objectTracker.setDetectionLabelsToTrack([15])  # 只追踪人
# 可能的跟踪类型:ZERO_TERM_COLOR_HISTOGRAM,ZERO_TERM_IMAGELESS
objectTracker.setTrackerType(dai.TrackerType.ZERO_TERM_COLOR_HISTOGRAM)
# 跟踪新对象时采用最小的ID,可能的选项:SMALLEST_ID,UNIQUE_ID
objectTracker.setTrackerIdAssigmentPolicy(dai.TrackerIdAssigmentPolicy.SMALLEST_ID)

objectTracker.out.link(trackerOut.input)
if fullFrameTracking:
    colorCam.setPreviewKeepAspectRatio(False)
    colorCam.video.link(objectTracker.inputTrackerFrame)
    objectTracker.inputTrackerFrame.setBlocking(False)
    # 如果全帧速度太慢,请不要阻塞管道
    objectTracker.inputTrackerFrame.setQueueSize(2)
else:
    spatialDetectionNetwork.passthrough.link(objectTracker.inputTrackerFrame)

spatialDetectionNetwork.passthrough.link(objectTracker.inputDetectionFrame)
spatialDetectionNetwork.out.link(objectTracker.inputDetections)

stereo.depth.link(spatialDetectionNetwork.inputDepth)


# 连接并启动管道
with dai.Device(pipeline) as device:

    preview = device.getOutputQueue("preview", 4, False)
    tracklets = device.getOutputQueue("tracklets", 4, False)

    startTime = time.monotonic()
    counter = 0
    fps = 0
    frame = None

    while(True):
        imgFrame = preview.get()
        track = tracklets.get()

        counter+=1
        current_time = time.monotonic()
        if (current_time - startTime) > 1 :
            fps = counter / (current_time - startTime)
            counter = 0
            startTime = current_time

        color = (255, 0, 0)
        frame = imgFrame.getCvFrame()
        trackletsData = track.tracklets
        for t in trackletsData:
            roi = t.roi.denormalize(frame.shape[1], frame.shape[0])
            x1 = int(roi.topLeft().x)
            y1 = int(roi.topLeft().y)
            x2 = int(roi.bottomRight().x)
            y2 = int(roi.bottomRight().y)

            try:
                label = labelMap[t.label]
            except:
                label = t.label

            cv2.putText(frame, str(label), (x1 + 10, y1 + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)
            cv2.putText(frame, f"ID: {[t.id]}", (x1 + 10, y1 + 35), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)
            cv2.putText(frame, t.status.name, (x1 + 10, y1 + 50), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)
            cv2.rectangle(frame, (x1, y1), (x2, y2), color, cv2.FONT_HERSHEY_SIMPLEX)

            cv2.putText(frame, f"X: {int(t.spatialCoordinates.x)} mm", (x1 + 10, y1 + 65), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)
            cv2.putText(frame, f"Y: {int(t.spatialCoordinates.y)} mm", (x1 + 10, y1 + 80), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)
            cv2.putText(frame, f"Z: {int(t.spatialCoordinates.z)} mm", (x1 + 10, y1 + 95), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)

        cv2.putText(frame, "NN fps: {:.2f}".format(fps), (2, frame.shape[0] - 4), cv2.FONT_HERSHEY_TRIPLEX, 0.4, color)

        cv2.imshow("tracker", frame)

        if cv2.waitKey(1) == ord('q'):
            break

有疑问?

我们很乐意为您提供代码或其他问题的帮助。