3.31. Gen2 在RGB相机上运行MobilenetSSD神经网络并获取深度信息
本示例说明如何在RGB输入帧上运行MobileNetv2SSD,以及如何显示RGB预览,检测,深度图和空间信息(X,Y,Z)。除了具有空间数据外。X,Y,Z坐标相对于深度图的中心。
setConfidenceThreshold-置信度阈值,高于该阈值将检测到对象
3.31.1. 演示
3.31.2. 设置
Warning
说明:此处安装的是第二代depthai库
请运行以下命令来安装所需的依赖项
python3 -m pip install -U pip
python3 -m pip install opencv-python
python3 -m pip install -U --force-reinstall depthai
有关更多信息,请参阅 Python API 安装指南
这个示例还需要 mobileenetsdd blob ( mobilenet.blob
文件 )才能工作——您可以从 这里 下载它。
3.31.3. 源代码
可以在 GitHub 上找到。国内用户也可以在 gitee 上找到。
#!/usr/bin/env python3
from pathlib import Path
import sys
import cv2
import depthai as dai
import numpy as np
import time
'''
空间检测网络演示。
在RGB相机上进行推断,并检索相对于深度图中心的空间位置坐标:x,y,z。
'''
# MobilenetSSD标签
labelMap = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow",
"diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
syncNN = True
# 首先获取模型文件
nnBlobPath = str((Path(__file__).parent / Path('models/mobilenet-ssd_openvino_2021.2_6shave.blob')).resolve().absolute())
if len(sys.argv) > 1:
nnBlobPath = sys.argv[1]
if not Path(nnBlobPath).exists():
import sys
raise FileNotFoundError(f'Required file/s not found, please run "{sys.executable} install_requirements.py"')
# 开始定义管道
pipeline = dai.Pipeline()
# 定义来源-彩色相机
colorCam = pipeline.createColorCamera()
spatialDetectionNetwork = pipeline.createMobileNetSpatialDetectionNetwork()
monoLeft = pipeline.createMonoCamera()
monoRight = pipeline.createMonoCamera()
stereo = pipeline.createStereoDepth()
xoutRgb = pipeline.createXLinkOut()
xoutNN = pipeline.createXLinkOut()
xoutBoundingBoxDepthMapping = pipeline.createXLinkOut()
xoutDepth = pipeline.createXLinkOut()
xoutRgb.setStreamName("rgb")
xoutNN.setStreamName("detections")
xoutBoundingBoxDepthMapping.setStreamName("boundingBoxDepthMapping")
xoutDepth.setStreamName("depth")
colorCam.setPreviewSize(300, 300)
colorCam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
colorCam.setInterleaved(False)
colorCam.setColorOrder(dai.ColorCameraProperties.ColorOrder.BGR)
monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
monoLeft.setBoardSocket(dai.CameraBoardSocket.LEFT)
monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
monoRight.setBoardSocket(dai.CameraBoardSocket.RIGHT)
# 设置节点配置
stereo.setConfidenceThreshold(255)
spatialDetectionNetwork.setBlobPath(nnBlobPath)
spatialDetectionNetwork.setConfidenceThreshold(0.5)
spatialDetectionNetwork.input.setBlocking(False)
spatialDetectionNetwork.setBoundingBoxScaleFactor(0.5)
spatialDetectionNetwork.setDepthLowerThreshold(100)
spatialDetectionNetwork.setDepthUpperThreshold(5000)
# 创建输出
monoLeft.out.link(stereo.left)
monoRight.out.link(stereo.right)
colorCam.preview.link(spatialDetectionNetwork.input)
if syncNN:
spatialDetectionNetwork.passthrough.link(xoutRgb.input)
else:
colorCam.preview.link(xoutRgb.input)
spatialDetectionNetwork.out.link(xoutNN.input)
spatialDetectionNetwork.boundingBoxMapping.link(xoutBoundingBoxDepthMapping.input)
stereo.depth.link(spatialDetectionNetwork.inputDepth)
spatialDetectionNetwork.passthroughDepth.link(xoutDepth.input)
# 连接并启动管道
with dai.Device(pipeline) as device:
# 输出队列将用于从上面定义的输出中获取rgb帧和nn数据
previewQueue = device.getOutputQueue(name="rgb", maxSize=4, blocking=False)
detectionNNQueue = device.getOutputQueue(name="detections", maxSize=4, blocking=False)
xoutBoundingBoxDepthMapping = device.getOutputQueue(name="boundingBoxDepthMapping", maxSize=4, blocking=False)
depthQueue = device.getOutputQueue(name="depth", maxSize=4, blocking=False)
frame = None
detections = []
startTime = time.monotonic()
counter = 0
fps = 0
color = (255, 255, 255)
while True:
inPreview = previewQueue.get()
inNN = detectionNNQueue.get()
depth = depthQueue.get()
counter+=1
current_time = time.monotonic()
if (current_time - startTime) > 1 :
fps = counter / (current_time - startTime)
counter = 0
startTime = current_time
frame = inPreview.getCvFrame()
depthFrame = depth.getFrame()
depthFrameColor = cv2.normalize(depthFrame, None, 255, 0, cv2.NORM_INF, cv2.CV_8UC1)
depthFrameColor = cv2.equalizeHist(depthFrameColor)
depthFrameColor = cv2.applyColorMap(depthFrameColor, cv2.COLORMAP_HOT)
detections = inNN.detections
if len(detections) != 0:
boundingBoxMapping = xoutBoundingBoxDepthMapping.get()
roiDatas = boundingBoxMapping.getConfigData()
for roiData in roiDatas:
roi = roiData.roi
roi = roi.denormalize(depthFrameColor.shape[1], depthFrameColor.shape[0])
topLeft = roi.topLeft()
bottomRight = roi.bottomRight()
xmin = int(topLeft.x)
ymin = int(topLeft.y)
xmax = int(bottomRight.x)
ymax = int(bottomRight.y)
cv2.rectangle(depthFrameColor, (xmin, ymin), (xmax, ymax), color, cv2.FONT_HERSHEY_SCRIPT_SIMPLEX)
# 如果框架可用,请在其上绘制边框并显示框架
height = frame.shape[0]
width = frame.shape[1]
for detection in detections:
# 归一化边界框
x1 = int(detection.xmin * width)
x2 = int(detection.xmax * width)
y1 = int(detection.ymin * height)
y2 = int(detection.ymax * height)
try:
label = labelMap[detection.label]
except:
label = detection.label
cv2.putText(frame, str(label), (x1 + 10, y1 + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)
cv2.putText(frame, "{:.2f}".format(detection.confidence*100), (x1 + 10, y1 + 35), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)
cv2.putText(frame, f"X: {int(detection.spatialCoordinates.x)} mm", (x1 + 10, y1 + 50), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)
cv2.putText(frame, f"Y: {int(detection.spatialCoordinates.y)} mm", (x1 + 10, y1 + 65), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)
cv2.putText(frame, f"Z: {int(detection.spatialCoordinates.z)} mm", (x1 + 10, y1 + 80), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)
cv2.rectangle(frame, (x1, y1), (x2, y2), color, cv2.FONT_HERSHEY_SIMPLEX)
cv2.putText(frame, "NN fps: {:.2f}".format(fps), (2, frame.shape[0] - 4), cv2.FONT_HERSHEY_TRIPLEX, 0.4, color)
cv2.imshow("depth", depthFrameColor)
cv2.imshow("rgb", frame)
if cv2.waitKey(1) == ord('q'):
break
有疑问?
我们很乐意为您提供代码或其他问题的帮助。
我们的联系方式
还可以通过我们发布的视频和文章了解OAK