NeuralNetwork¶
This node runs neural inference on input data. Any OpenVINO neural networks can be run using this node, as long as the VPU supports all layers. This allows you to pick from 200+ pre-trained model from Open Model Zoo and DepthAI Model Zoo and directly run it on the OAK device.
Neural network has to be in .blob
format to be compatible with the VPU. Instructions on how to compile
your neural network (NN) to .blob
can be found here.
How to place it¶
pipeline = dai.Pipeline()
nn = pipeline.create(dai.node.NeuralNetwork)
dai::Pipeline pipeline;
auto nn = pipeline.create<dai::node::NeuralNetwork>();
Inputs and Outputs¶
┌───────────────────┐
│ │ out
│ ├───────────►
│ │
│ NeuralNetwork │
input │ │ passthrough
───────────►│-------------------├───────────►
│ │
└───────────────────┘
Message types
Passthrough mechanism¶
The passthrough mechanism is very useful when a node specifies its input to be non-blocking, where messages can be overwritten. There we don’t know on which message the node performed its operation (eg NN, was inference done on frame 25 or skipped 25 and performed inference on 26). At the same time means that if: xlink and host input queues are blocking, and we receive both say passthrough and output we can do a blocking get on both of those queues and be sure to always get matching frames. They might not arrive at the same time, but both of them will arrive, and be in queue in correct spot to be taken out together.
Usage¶
pipeline = dai.Pipeline()
nn = pipeline.create(dai.node.NeuralNetwork)
nn.setBlobPath(bbBlobPath)
cam.out.link(nn.input)
# Send NN out to the host via XLink
nnXout = pipeline.create(dai.node.XLinkOut)
nnXout.setStreamName("nn")
nn.out.link(nnXout.input)
with dai.Device(pipeline) as device:
qNn = device.getOutputQueue("nn")
nnData = qNn.get() # Blocking
# NN can output from multiple layers. Print all layer names:
print(nnData.getAllLayerNames())
# Get layer named "Layer1_FP16" as FP16
layer1Data = nnData.getLayerFp16("Layer1_FP16")
# You can now decode the output of your NN
dai::Pipeline pipeline;
auto nn = pipeline.create<dai::node::NeuralNetwork>();
nn->setBlobPath(bbBlobPath);
cam->out.link(nn->input);
// Send NN out to the host via XLink
auto nnXout = pipeline.create<dai::node::XLinkOut>();
nnXout->setStreamName("nn");
nn->out.link(nnXout->input);
dai::Device device(pipeline);
// Start the pipeline
device.startPipeline();
auto qNn = device.getOutputQueue("nn");
auto nnData = qNn->get<dai::NNData>(); // Blocking
// NN can output from multiple layers. Print all layer names:
cout << nnData->getAllLayerNames();
// Get layer named "Layer1_FP16" as FP16
auto layer1Data = nnData->getLayerFp16("Layer1_FP16");
// You can now decode the output of your NN
Examples of functionality¶
Reference¶
-
class
depthai.node.
NeuralNetwork
-
class
Id
Node identificator. Unique for every node on a single Pipeline
-
getAssetManager
(*args, **kwargs) Overloaded function.
getAssetManager(self: depthai.Node) -> depthai.AssetManager
getAssetManager(self: depthai.Node) -> depthai.AssetManager
-
getInputRefs
(*args, **kwargs) Overloaded function.
getInputRefs(self: depthai.Node) -> list[depthai.Node.Input]
getInputRefs(self: depthai.Node) -> list[depthai.Node.Input]
-
getInputs
(self: depthai.Node) → list[depthai.Node.Input]
-
getName
(self: depthai.Node) → str
-
getNumInferenceThreads
(self: depthai.node.NeuralNetwork) → int
-
getOutputRefs
(*args, **kwargs) Overloaded function.
getOutputRefs(self: depthai.Node) -> list[depthai.Node.Output]
getOutputRefs(self: depthai.Node) -> list[depthai.Node.Output]
-
getOutputs
(self: depthai.Node) → list[depthai.Node.Output]
-
getParentPipeline
(*args, **kwargs) Overloaded function.
getParentPipeline(self: depthai.Node) -> depthai.Pipeline
getParentPipeline(self: depthai.Node) -> depthai.Pipeline
-
setBlob
(*args, **kwargs) Overloaded function.
setBlob(self: depthai.node.NeuralNetwork, blob: depthai.OpenVINO.Blob) -> None
setBlob(self: depthai.node.NeuralNetwork, path: Path) -> None
-
setBlobPath
(self: depthai.node.NeuralNetwork, path: Path) → None
-
setNumInferenceThreads
(self: depthai.node.NeuralNetwork, numThreads: int) → None
-
setNumNCEPerInferenceThread
(self: depthai.node.NeuralNetwork, numNCEPerThread: int) → None
-
setNumPoolFrames
(self: depthai.node.NeuralNetwork, numFrames: int) → None
-
class
-
class
dai::node
::
NeuralNetwork
: public dai::NodeCRTP<Node, NeuralNetwork, NeuralNetworkProperties>¶ NeuralNetwork node. Runs a neural inference on input data.
Public Functions
-
void
setBlobPath
(const dai::Path &path)¶ Load network blob into assets and use once pipeline is started.
- Exceptions
Error
: if file doesn’t exist or isn’t a valid network blob.
- Parameters
path
: Path to network blob
-
void
setBlob
(OpenVINO::Blob blob)¶ Load network blob into assets and use once pipeline is started.
- Parameters
blob
: Network blob
-
void
setBlob
(const dai::Path &path)¶ Same functionality as the setBlobPath(). Load network blob into assets and use once pipeline is started.
- Exceptions
Error
: if file doesn’t exist or isn’t a valid network blob.
- Parameters
path
: Path to network blob
-
void
setNumPoolFrames
(int numFrames)¶ Specifies how many frames will be available in the pool
- Parameters
numFrames
: How many frames will pool have
-
void
setNumInferenceThreads
(int numThreads)¶ How many threads should the node use to run the network.
- Parameters
numThreads
: Number of threads to dedicate to this node
-
void
setNumNCEPerInferenceThread
(int numNCEPerThread)¶ How many Neural Compute Engines should a single thread use for inference
- Parameters
numNCEPerThread
: Number of NCE per thread
-
int
getNumInferenceThreads
()¶ How many inference threads will be used to run the network
- Return
Number of threads, 0, 1 or 2. Zero means AUTO
Public Members
-
Input
input
= {*this, "in", Input::Type::SReceiver, true, 5, true, {{DatatypeEnum::Buffer, true}}}¶ Input message with data to be inferred upon Default queue is blocking with size 5
-
Output
out
= {*this, "out", Output::Type::MSender, {{DatatypeEnum::NNData, false}}}¶ Outputs NNData message that carries inference results
-
Output
passthrough
= {*this, "passthrough", Output::Type::MSender, {{DatatypeEnum::Buffer, true}}}¶ Passthrough message on which the inference was performed.
Suitable for when input queue is set to non-blocking behavior.
-
InputMap
inputs
¶ Inputs mapped to network inputs. Useful for inferring from separate data sources Default input is non-blocking with queue size 1 and waits for messages
-
OutputMap
passthroughs
¶ Passthroughs which correspond to specified input
Public Static Attributes
-
static constexpr const char *
NAME
= "NeuralNetwork"¶
-
void