Object tracker on RGB¶
This example shows how to run MobileNetv2SSD on the RGB input frame, and perform object tracking on persons.
Similar samples:
Demo¶
Setup¶
Please run the install script to download all required dependencies. Please note that this script must be ran from git context, so you have to download the depthai-python repository first and then run the script
git clone https://github.com/luxonis/depthai-python.git
cd depthai-python/examples
python3 install_requirements.py
For additional information, please follow installation guide
This example script requires external file(s) to run. If you are using:
depthai-python, run
python3 examples/install_requirements.py
to download required file(s)dephtai-core, required file(s) will get downloaded automatically when building the example
Source code¶
Also available on GitHub
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 | #!/usr/bin/env python3
from pathlib import Path
import cv2
import depthai as dai
import numpy as np
import time
import argparse
labelMap = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow",
"diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
nnPathDefault = str((Path(__file__).parent / Path('../models/mobilenet-ssd_openvino_2021.4_6shave.blob')).resolve().absolute())
parser = argparse.ArgumentParser()
parser.add_argument('nnPath', nargs='?', help="Path to mobilenet detection network blob", default=nnPathDefault)
parser.add_argument('-ff', '--full_frame', action="store_true", help="Perform tracking on full RGB frame", default=False)
args = parser.parse_args()
fullFrameTracking = args.full_frame
# Create pipeline
pipeline = dai.Pipeline()
# Define sources and outputs
camRgb = pipeline.create(dai.node.ColorCamera)
detectionNetwork = pipeline.create(dai.node.MobileNetDetectionNetwork)
objectTracker = pipeline.create(dai.node.ObjectTracker)
xlinkOut = pipeline.create(dai.node.XLinkOut)
trackerOut = pipeline.create(dai.node.XLinkOut)
xlinkOut.setStreamName("preview")
trackerOut.setStreamName("tracklets")
# Properties
camRgb.setPreviewSize(300, 300)
camRgb.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
camRgb.setInterleaved(False)
camRgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.BGR)
camRgb.setFps(40)
# testing MobileNet DetectionNetwork
detectionNetwork.setBlobPath(args.nnPath)
detectionNetwork.setConfidenceThreshold(0.5)
detectionNetwork.input.setBlocking(False)
objectTracker.setDetectionLabelsToTrack([15]) # track only person
# possible tracking types: ZERO_TERM_COLOR_HISTOGRAM, ZERO_TERM_IMAGELESS, SHORT_TERM_IMAGELESS, SHORT_TERM_KCF
objectTracker.setTrackerType(dai.TrackerType.ZERO_TERM_COLOR_HISTOGRAM)
# take the smallest ID when new object is tracked, possible options: SMALLEST_ID, UNIQUE_ID
objectTracker.setTrackerIdAssignmentPolicy(dai.TrackerIdAssignmentPolicy.SMALLEST_ID)
# Linking
camRgb.preview.link(detectionNetwork.input)
objectTracker.passthroughTrackerFrame.link(xlinkOut.input)
if fullFrameTracking:
camRgb.video.link(objectTracker.inputTrackerFrame)
else:
detectionNetwork.passthrough.link(objectTracker.inputTrackerFrame)
detectionNetwork.passthrough.link(objectTracker.inputDetectionFrame)
detectionNetwork.out.link(objectTracker.inputDetections)
objectTracker.out.link(trackerOut.input)
# Connect to device and start pipeline
with dai.Device(pipeline) as device:
preview = device.getOutputQueue("preview", 4, False)
tracklets = device.getOutputQueue("tracklets", 4, False)
startTime = time.monotonic()
counter = 0
fps = 0
frame = None
while(True):
imgFrame = preview.get()
track = tracklets.get()
counter+=1
current_time = time.monotonic()
if (current_time - startTime) > 1 :
fps = counter / (current_time - startTime)
counter = 0
startTime = current_time
color = (255, 0, 0)
frame = imgFrame.getCvFrame()
trackletsData = track.tracklets
for t in trackletsData:
roi = t.roi.denormalize(frame.shape[1], frame.shape[0])
x1 = int(roi.topLeft().x)
y1 = int(roi.topLeft().y)
x2 = int(roi.bottomRight().x)
y2 = int(roi.bottomRight().y)
try:
label = labelMap[t.label]
except:
label = t.label
cv2.putText(frame, str(label), (x1 + 10, y1 + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
cv2.putText(frame, f"ID: {[t.id]}", (x1 + 10, y1 + 35), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
cv2.putText(frame, t.status.name, (x1 + 10, y1 + 50), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
cv2.rectangle(frame, (x1, y1), (x2, y2), color, cv2.FONT_HERSHEY_SIMPLEX)
cv2.putText(frame, "NN fps: {:.2f}".format(fps), (2, frame.shape[0] - 4), cv2.FONT_HERSHEY_TRIPLEX, 0.4, color)
cv2.imshow("tracker", frame)
if cv2.waitKey(1) == ord('q'):
break
|
Also available on GitHub
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 | #include <chrono>
#include <iostream>
// Includes common necessary includes for development using depthai library
#include "depthai/depthai.hpp"
static const std::vector<std::string> labelMap = {"background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus",
"car", "cat", "chair", "cow", "diningtable", "dog", "horse",
"motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
static std::atomic<bool> fullFrameTracking{false};
int main(int argc, char** argv) {
using namespace std;
using namespace std::chrono;
std::string nnPath(BLOB_PATH);
// If path to blob specified, use that
if(argc > 1) {
nnPath = std::string(argv[1]);
}
// Print which blob we are using
printf("Using blob at path: %s\n", nnPath.c_str());
// Create pipeline
dai::Pipeline pipeline;
// Define sources and outputs
auto camRgb = pipeline.create<dai::node::ColorCamera>();
auto detectionNetwork = pipeline.create<dai::node::MobileNetDetectionNetwork>();
auto objectTracker = pipeline.create<dai::node::ObjectTracker>();
auto xlinkOut = pipeline.create<dai::node::XLinkOut>();
auto trackerOut = pipeline.create<dai::node::XLinkOut>();
xlinkOut->setStreamName("preview");
trackerOut->setStreamName("tracklets");
// Properties
camRgb->setPreviewSize(300, 300);
camRgb->setResolution(dai::ColorCameraProperties::SensorResolution::THE_1080_P);
camRgb->setInterleaved(false);
camRgb->setColorOrder(dai::ColorCameraProperties::ColorOrder::BGR);
camRgb->setFps(40);
// testing MobileNet DetectionNetwork
detectionNetwork->setBlobPath(nnPath);
detectionNetwork->setConfidenceThreshold(0.5f);
detectionNetwork->input.setBlocking(false);
objectTracker->setDetectionLabelsToTrack({15}); // track only person
// possible tracking types: ZERO_TERM_COLOR_HISTOGRAM, ZERO_TERM_IMAGELESS, SHORT_TERM_IMAGELESS, SHORT_TERM_KCF
objectTracker->setTrackerType(dai::TrackerType::ZERO_TERM_COLOR_HISTOGRAM);
// take the smallest ID when new object is tracked, possible options: SMALLEST_ID, UNIQUE_ID
objectTracker->setTrackerIdAssignmentPolicy(dai::TrackerIdAssignmentPolicy::SMALLEST_ID);
// Linking
camRgb->preview.link(detectionNetwork->input);
objectTracker->passthroughTrackerFrame.link(xlinkOut->input);
if(fullFrameTracking) {
camRgb->video.link(objectTracker->inputTrackerFrame);
} else {
detectionNetwork->passthrough.link(objectTracker->inputTrackerFrame);
}
detectionNetwork->passthrough.link(objectTracker->inputDetectionFrame);
detectionNetwork->out.link(objectTracker->inputDetections);
objectTracker->out.link(trackerOut->input);
// Connect to device and start pipeline
dai::Device device(pipeline);
auto preview = device.getOutputQueue("preview", 4, false);
auto tracklets = device.getOutputQueue("tracklets", 4, false);
auto startTime = steady_clock::now();
int counter = 0;
float fps = 0;
while(true) {
auto imgFrame = preview->get<dai::ImgFrame>();
auto track = tracklets->get<dai::Tracklets>();
counter++;
auto currentTime = steady_clock::now();
auto elapsed = duration_cast<duration<float>>(currentTime - startTime);
if(elapsed > seconds(1)) {
fps = counter / elapsed.count();
counter = 0;
startTime = currentTime;
}
auto color = cv::Scalar(255, 0, 0);
cv::Mat frame = imgFrame->getCvFrame();
auto trackletsData = track->tracklets;
for(auto& t : trackletsData) {
auto roi = t.roi.denormalize(frame.cols, frame.rows);
int x1 = roi.topLeft().x;
int y1 = roi.topLeft().y;
int x2 = roi.bottomRight().x;
int y2 = roi.bottomRight().y;
uint32_t labelIndex = t.label;
std::string labelStr = to_string(labelIndex);
if(labelIndex < labelMap.size()) {
labelStr = labelMap[labelIndex];
}
cv::putText(frame, labelStr, cv::Point(x1 + 10, y1 + 20), cv::FONT_HERSHEY_TRIPLEX, 0.5, color);
std::stringstream idStr;
idStr << "ID: " << t.id;
cv::putText(frame, idStr.str(), cv::Point(x1 + 10, y1 + 40), cv::FONT_HERSHEY_TRIPLEX, 0.5, color);
std::stringstream statusStr;
statusStr << "Status: " << t.status;
cv::putText(frame, statusStr.str(), cv::Point(x1 + 10, y1 + 60), cv::FONT_HERSHEY_TRIPLEX, 0.5, color);
cv::rectangle(frame, cv::Rect(cv::Point(x1, y1), cv::Point(x2, y2)), color, cv::FONT_HERSHEY_SIMPLEX);
}
std::stringstream fpsStr;
fpsStr << "NN fps:" << std::fixed << std::setprecision(2) << fps;
cv::putText(frame, fpsStr.str(), cv::Point(2, imgFrame->getHeight() - 4), cv::FONT_HERSHEY_TRIPLEX, 0.4, color);
cv::imshow("tracker", frame);
int key = cv::waitKey(1);
if(key == 'q' || key == 'Q') {
return 0;
}
}
return 0;
}
|