Object tracker on RGB

This example shows how to run MobileNetv2SSD on the RGB input frame, and perform object tracking on persons.

Similar samples:

Demo

Setup

Please run the install script to download all required dependencies. Please note that this script must be ran from git context, so you have to download the depthai-python repository first and then run the script

git clone https://github.com/luxonis/depthai-python.git
cd depthai-python/examples
python3 install_requirements.py

For additional information, please follow installation guide

This example script requires external file(s) to run. If you are using:

  • depthai-python, run python3 examples/install_requirements.py to download required file(s)

  • dephtai-core, required file(s) will get downloaded automatically when building the example

Source code

Also available on GitHub

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#!/usr/bin/env python3

from pathlib import Path
import cv2
import depthai as dai
import numpy as np
import time
import argparse

labelMap = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow",
            "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]

nnPathDefault = str((Path(__file__).parent / Path('../models/mobilenet-ssd_openvino_2021.4_6shave.blob')).resolve().absolute())
parser = argparse.ArgumentParser()
parser.add_argument('nnPath', nargs='?', help="Path to mobilenet detection network blob", default=nnPathDefault)
parser.add_argument('-ff', '--full_frame', action="store_true", help="Perform tracking on full RGB frame", default=False)

args = parser.parse_args()

fullFrameTracking = args.full_frame

# Create pipeline
pipeline = dai.Pipeline()

# Define sources and outputs
camRgb = pipeline.create(dai.node.ColorCamera)
detectionNetwork = pipeline.create(dai.node.MobileNetDetectionNetwork)
objectTracker = pipeline.create(dai.node.ObjectTracker)

xlinkOut = pipeline.create(dai.node.XLinkOut)
trackerOut = pipeline.create(dai.node.XLinkOut)

xlinkOut.setStreamName("preview")
trackerOut.setStreamName("tracklets")

# Properties
camRgb.setPreviewSize(300, 300)
camRgb.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
camRgb.setInterleaved(False)
camRgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.BGR)
camRgb.setFps(40)

# testing MobileNet DetectionNetwork
detectionNetwork.setBlobPath(args.nnPath)
detectionNetwork.setConfidenceThreshold(0.5)
detectionNetwork.input.setBlocking(False)

objectTracker.setDetectionLabelsToTrack([15])  # track only person
# possible tracking types: ZERO_TERM_COLOR_HISTOGRAM, ZERO_TERM_IMAGELESS, SHORT_TERM_IMAGELESS, SHORT_TERM_KCF
objectTracker.setTrackerType(dai.TrackerType.ZERO_TERM_COLOR_HISTOGRAM)
# take the smallest ID when new object is tracked, possible options: SMALLEST_ID, UNIQUE_ID
objectTracker.setTrackerIdAssignmentPolicy(dai.TrackerIdAssignmentPolicy.SMALLEST_ID)

# Linking
camRgb.preview.link(detectionNetwork.input)
objectTracker.passthroughTrackerFrame.link(xlinkOut.input)

if fullFrameTracking:
    camRgb.video.link(objectTracker.inputTrackerFrame)
else:
    detectionNetwork.passthrough.link(objectTracker.inputTrackerFrame)

detectionNetwork.passthrough.link(objectTracker.inputDetectionFrame)
detectionNetwork.out.link(objectTracker.inputDetections)
objectTracker.out.link(trackerOut.input)

# Connect to device and start pipeline
with dai.Device(pipeline) as device:

    preview = device.getOutputQueue("preview", 4, False)
    tracklets = device.getOutputQueue("tracklets", 4, False)

    startTime = time.monotonic()
    counter = 0
    fps = 0
    frame = None

    while(True):
        imgFrame = preview.get()
        track = tracklets.get()

        counter+=1
        current_time = time.monotonic()
        if (current_time - startTime) > 1 :
            fps = counter / (current_time - startTime)
            counter = 0
            startTime = current_time

        color = (255, 0, 0)
        frame = imgFrame.getCvFrame()
        trackletsData = track.tracklets
        for t in trackletsData:
            roi = t.roi.denormalize(frame.shape[1], frame.shape[0])
            x1 = int(roi.topLeft().x)
            y1 = int(roi.topLeft().y)
            x2 = int(roi.bottomRight().x)
            y2 = int(roi.bottomRight().y)

            try:
                label = labelMap[t.label]
            except:
                label = t.label

            cv2.putText(frame, str(label), (x1 + 10, y1 + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
            cv2.putText(frame, f"ID: {[t.id]}", (x1 + 10, y1 + 35), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
            cv2.putText(frame, t.status.name, (x1 + 10, y1 + 50), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
            cv2.rectangle(frame, (x1, y1), (x2, y2), color, cv2.FONT_HERSHEY_SIMPLEX)

        cv2.putText(frame, "NN fps: {:.2f}".format(fps), (2, frame.shape[0] - 4), cv2.FONT_HERSHEY_TRIPLEX, 0.4, color)

        cv2.imshow("tracker", frame)

        if cv2.waitKey(1) == ord('q'):
            break

Also available on GitHub

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#include <chrono>
#include <iostream>

// Includes common necessary includes for development using depthai library
#include "depthai/depthai.hpp"

static const std::vector<std::string> labelMap = {"background", "aeroplane", "bicycle",     "bird",  "boat",        "bottle", "bus",
                                                  "car",        "cat",       "chair",       "cow",   "diningtable", "dog",    "horse",
                                                  "motorbike",  "person",    "pottedplant", "sheep", "sofa",        "train",  "tvmonitor"};

static std::atomic<bool> fullFrameTracking{false};

int main(int argc, char** argv) {
    using namespace std;
    using namespace std::chrono;
    std::string nnPath(BLOB_PATH);

    // If path to blob specified, use that
    if(argc > 1) {
        nnPath = std::string(argv[1]);
    }

    // Print which blob we are using
    printf("Using blob at path: %s\n", nnPath.c_str());

    // Create pipeline
    dai::Pipeline pipeline;

    // Define sources and outputs
    auto camRgb = pipeline.create<dai::node::ColorCamera>();
    auto detectionNetwork = pipeline.create<dai::node::MobileNetDetectionNetwork>();
    auto objectTracker = pipeline.create<dai::node::ObjectTracker>();

    auto xlinkOut = pipeline.create<dai::node::XLinkOut>();
    auto trackerOut = pipeline.create<dai::node::XLinkOut>();

    xlinkOut->setStreamName("preview");
    trackerOut->setStreamName("tracklets");

    // Properties
    camRgb->setPreviewSize(300, 300);
    camRgb->setResolution(dai::ColorCameraProperties::SensorResolution::THE_1080_P);
    camRgb->setInterleaved(false);
    camRgb->setColorOrder(dai::ColorCameraProperties::ColorOrder::BGR);
    camRgb->setFps(40);

    // testing MobileNet DetectionNetwork
    detectionNetwork->setBlobPath(nnPath);
    detectionNetwork->setConfidenceThreshold(0.5f);
    detectionNetwork->input.setBlocking(false);

    objectTracker->setDetectionLabelsToTrack({15});  // track only person
    // possible tracking types: ZERO_TERM_COLOR_HISTOGRAM, ZERO_TERM_IMAGELESS, SHORT_TERM_IMAGELESS, SHORT_TERM_KCF
    objectTracker->setTrackerType(dai::TrackerType::ZERO_TERM_COLOR_HISTOGRAM);
    // take the smallest ID when new object is tracked, possible options: SMALLEST_ID, UNIQUE_ID
    objectTracker->setTrackerIdAssignmentPolicy(dai::TrackerIdAssignmentPolicy::SMALLEST_ID);

    // Linking
    camRgb->preview.link(detectionNetwork->input);
    objectTracker->passthroughTrackerFrame.link(xlinkOut->input);

    if(fullFrameTracking) {
        camRgb->video.link(objectTracker->inputTrackerFrame);
    } else {
        detectionNetwork->passthrough.link(objectTracker->inputTrackerFrame);
    }

    detectionNetwork->passthrough.link(objectTracker->inputDetectionFrame);
    detectionNetwork->out.link(objectTracker->inputDetections);
    objectTracker->out.link(trackerOut->input);

    // Connect to device and start pipeline
    dai::Device device(pipeline);

    auto preview = device.getOutputQueue("preview", 4, false);
    auto tracklets = device.getOutputQueue("tracklets", 4, false);

    auto startTime = steady_clock::now();
    int counter = 0;
    float fps = 0;

    while(true) {
        auto imgFrame = preview->get<dai::ImgFrame>();
        auto track = tracklets->get<dai::Tracklets>();

        counter++;
        auto currentTime = steady_clock::now();
        auto elapsed = duration_cast<duration<float>>(currentTime - startTime);
        if(elapsed > seconds(1)) {
            fps = counter / elapsed.count();
            counter = 0;
            startTime = currentTime;
        }

        auto color = cv::Scalar(255, 0, 0);
        cv::Mat frame = imgFrame->getCvFrame();
        auto trackletsData = track->tracklets;
        for(auto& t : trackletsData) {
            auto roi = t.roi.denormalize(frame.cols, frame.rows);
            int x1 = roi.topLeft().x;
            int y1 = roi.topLeft().y;
            int x2 = roi.bottomRight().x;
            int y2 = roi.bottomRight().y;

            uint32_t labelIndex = t.label;
            std::string labelStr = to_string(labelIndex);
            if(labelIndex < labelMap.size()) {
                labelStr = labelMap[labelIndex];
            }
            cv::putText(frame, labelStr, cv::Point(x1 + 10, y1 + 20), cv::FONT_HERSHEY_TRIPLEX, 0.5, color);

            std::stringstream idStr;
            idStr << "ID: " << t.id;
            cv::putText(frame, idStr.str(), cv::Point(x1 + 10, y1 + 40), cv::FONT_HERSHEY_TRIPLEX, 0.5, color);
            std::stringstream statusStr;
            statusStr << "Status: " << t.status;
            cv::putText(frame, statusStr.str(), cv::Point(x1 + 10, y1 + 60), cv::FONT_HERSHEY_TRIPLEX, 0.5, color);

            cv::rectangle(frame, cv::Rect(cv::Point(x1, y1), cv::Point(x2, y2)), color, cv::FONT_HERSHEY_SIMPLEX);
        }

        std::stringstream fpsStr;
        fpsStr << "NN fps:" << std::fixed << std::setprecision(2) << fps;
        cv::putText(frame, fpsStr.str(), cv::Point(2, imgFrame->getHeight() - 4), cv::FONT_HERSHEY_TRIPLEX, 0.4, color);

        cv::imshow("tracker", frame);

        int key = cv::waitKey(1);
        if(key == 'q' || key == 'Q') {
            return 0;
        }
    }
    return 0;
}

Got questions?

Head over to Discussion Forum for technical support or any other questions you might have.