RGB & Tiny YOLO¶
This example shows how to run YOLO on the RGB input frame, and how to display both the RGB preview and the metadata results from the YOLO model on the preview. Decoding is done on the RVC instead on the host computer.
Configurable, network dependent parameters are required for correct decoding:
setNumClasses - number of YOLO classes
setCoordinateSize - size of coordinate
setAnchors - yolo anchors
setAnchorMasks - anchorMasks26, anchorMasks13 (anchorMasks52 - additionally for full YOLOv4)
setIouThreshold - intersection over union threshold
setConfidenceThreshold - confidence threshold above which objects are detected
By default, Tiny YOLOv4 is used. You can add yolo3
as a CMD argument to use Tiny YOLOv3.
Demo¶
Setup¶
Please run the install script to download all required dependencies. Please note that this script must be ran from git context, so you have to download the depthai-python repository first and then run the script
git clone https://github.com/luxonis/depthai-python.git
cd depthai-python/examples
python3 install_requirements.py
For additional information, please follow installation guide
This example script requires external file(s) to run. If you are using:
depthai-python, run
python3 examples/install_requirements.py
to download required file(s)dephtai-core, required file(s) will get downloaded automatically when building the example
Source code¶
Also available on GitHub
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 | #!/usr/bin/env python3
"""
The code is the same as for Tiny Yolo V3 and V4, the only difference is the blob file
- Tiny YOLOv3: https://github.com/david8862/keras-YOLOv3-model-set
- Tiny YOLOv4: https://github.com/TNTWEN/OpenVINO-YOLOV4
"""
from pathlib import Path
import sys
import cv2
import depthai as dai
import numpy as np
import time
# Get argument first
nnPath = str((Path(__file__).parent / Path('../models/yolo-v4-tiny-tf_openvino_2021.4_6shave.blob')).resolve().absolute())
if 1 < len(sys.argv):
arg = sys.argv[1]
if arg == "yolo3":
nnPath = str((Path(__file__).parent / Path('../models/yolo-v3-tiny-tf_openvino_2021.4_6shave.blob')).resolve().absolute())
elif arg == "yolo4":
nnPath = str((Path(__file__).parent / Path('../models/yolo-v4-tiny-tf_openvino_2021.4_6shave.blob')).resolve().absolute())
else:
nnPath = arg
else:
print("Using Tiny YoloV4 model. If you wish to use Tiny YOLOv3, call 'tiny_yolo.py yolo3'")
if not Path(nnPath).exists():
import sys
raise FileNotFoundError(f'Required file/s not found, please run "{sys.executable} install_requirements.py"')
# tiny yolo v4 label texts
labelMap = [
"person", "bicycle", "car", "motorbike", "aeroplane", "bus", "train",
"truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench",
"bird", "cat", "dog", "horse", "sheep", "cow", "elephant",
"bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie",
"suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat",
"baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup",
"fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich",
"orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake",
"chair", "sofa", "pottedplant", "bed", "diningtable", "toilet", "tvmonitor",
"laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven",
"toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors",
"teddy bear", "hair drier", "toothbrush"
]
syncNN = True
# Create pipeline
pipeline = dai.Pipeline()
# Define sources and outputs
camRgb = pipeline.create(dai.node.ColorCamera)
detectionNetwork = pipeline.create(dai.node.YoloDetectionNetwork)
xoutRgb = pipeline.create(dai.node.XLinkOut)
nnOut = pipeline.create(dai.node.XLinkOut)
xoutRgb.setStreamName("rgb")
nnOut.setStreamName("nn")
# Properties
camRgb.setPreviewSize(416, 416)
camRgb.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
camRgb.setInterleaved(False)
camRgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.BGR)
camRgb.setFps(40)
# Network specific settings
detectionNetwork.setConfidenceThreshold(0.5)
detectionNetwork.setNumClasses(80)
detectionNetwork.setCoordinateSize(4)
detectionNetwork.setAnchors([10, 14, 23, 27, 37, 58, 81, 82, 135, 169, 344, 319])
detectionNetwork.setAnchorMasks({"side26": [1, 2, 3], "side13": [3, 4, 5]})
detectionNetwork.setIouThreshold(0.5)
detectionNetwork.setBlobPath(nnPath)
detectionNetwork.setNumInferenceThreads(2)
detectionNetwork.input.setBlocking(False)
# Linking
camRgb.preview.link(detectionNetwork.input)
if syncNN:
detectionNetwork.passthrough.link(xoutRgb.input)
else:
camRgb.preview.link(xoutRgb.input)
detectionNetwork.out.link(nnOut.input)
# Connect to device and start pipeline
with dai.Device(pipeline) as device:
# Output queues will be used to get the rgb frames and nn data from the outputs defined above
qRgb = device.getOutputQueue(name="rgb", maxSize=4, blocking=False)
qDet = device.getOutputQueue(name="nn", maxSize=4, blocking=False)
frame = None
detections = []
startTime = time.monotonic()
counter = 0
color2 = (255, 255, 255)
# nn data, being the bounding box locations, are in <0..1> range - they need to be normalized with frame width/height
def frameNorm(frame, bbox):
normVals = np.full(len(bbox), frame.shape[0])
normVals[::2] = frame.shape[1]
return (np.clip(np.array(bbox), 0, 1) * normVals).astype(int)
def displayFrame(name, frame):
color = (255, 0, 0)
for detection in detections:
bbox = frameNorm(frame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax))
cv2.putText(frame, labelMap[detection.label], (bbox[0] + 10, bbox[1] + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
cv2.putText(frame, f"{int(detection.confidence * 100)}%", (bbox[0] + 10, bbox[1] + 40), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color, 2)
# Show the frame
cv2.imshow(name, frame)
while True:
if syncNN:
inRgb = qRgb.get()
inDet = qDet.get()
else:
inRgb = qRgb.tryGet()
inDet = qDet.tryGet()
if inRgb is not None:
frame = inRgb.getCvFrame()
cv2.putText(frame, "NN fps: {:.2f}".format(counter / (time.monotonic() - startTime)),
(2, frame.shape[0] - 4), cv2.FONT_HERSHEY_TRIPLEX, 0.4, color2)
if inDet is not None:
detections = inDet.detections
counter += 1
if frame is not None:
displayFrame("rgb", frame)
if cv2.waitKey(1) == ord('q'):
break
|
Also available on GitHub
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 | #include <chrono>
#include <iostream>
// Includes common necessary includes for development using depthai library
#include "depthai/depthai.hpp"
/*
The code is the same as for Tiny-yolo-V3, the only difference is the blob file.
The blob was compiled following this tutorial: https://github.com/TNTWEN/OpenVINO-YOLOV4
*/
static const std::vector<std::string> labelMap = {
"person", "bicycle", "car", "motorbike", "aeroplane", "bus", "train", "truck", "boat",
"traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse",
"sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag",
"tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove",
"skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon",
"bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza",
"donut", "cake", "chair", "sofa", "pottedplant", "bed", "diningtable", "toilet", "tvmonitor",
"laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink",
"refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"};
static std::atomic<bool> syncNN{true};
int main(int argc, char** argv) {
using namespace std;
using namespace std::chrono;
std::string nnPath(BLOB_PATH);
// If path to blob specified, use that
if(argc > 1) {
nnPath = std::string(argv[1]);
}
// Print which blob we are using
printf("Using blob at path: %s\n", nnPath.c_str());
// Create pipeline
dai::Pipeline pipeline;
// Define sources and outputs
auto camRgb = pipeline.create<dai::node::ColorCamera>();
auto detectionNetwork = pipeline.create<dai::node::YoloDetectionNetwork>();
auto xoutRgb = pipeline.create<dai::node::XLinkOut>();
auto nnOut = pipeline.create<dai::node::XLinkOut>();
xoutRgb->setStreamName("rgb");
nnOut->setStreamName("detections");
// Properties
camRgb->setPreviewSize(416, 416);
camRgb->setResolution(dai::ColorCameraProperties::SensorResolution::THE_1080_P);
camRgb->setInterleaved(false);
camRgb->setColorOrder(dai::ColorCameraProperties::ColorOrder::BGR);
camRgb->setFps(40);
// Network specific settings
detectionNetwork->setConfidenceThreshold(0.5f);
detectionNetwork->setNumClasses(80);
detectionNetwork->setCoordinateSize(4);
detectionNetwork->setAnchors({10, 14, 23, 27, 37, 58, 81, 82, 135, 169, 344, 319});
detectionNetwork->setAnchorMasks({{"side26", {1, 2, 3}}, {"side13", {3, 4, 5}}});
detectionNetwork->setIouThreshold(0.5f);
detectionNetwork->setBlobPath(nnPath);
detectionNetwork->setNumInferenceThreads(2);
detectionNetwork->input.setBlocking(false);
// Linking
camRgb->preview.link(detectionNetwork->input);
if(syncNN) {
detectionNetwork->passthrough.link(xoutRgb->input);
} else {
camRgb->preview.link(xoutRgb->input);
}
detectionNetwork->out.link(nnOut->input);
// Connect to device and start pipeline
dai::Device device(pipeline);
// Output queues will be used to get the rgb frames and nn data from the outputs defined above
auto qRgb = device.getOutputQueue("rgb", 4, false);
auto qDet = device.getOutputQueue("detections", 4, false);
cv::Mat frame;
std::vector<dai::ImgDetection> detections;
auto startTime = steady_clock::now();
int counter = 0;
float fps = 0;
auto color2 = cv::Scalar(255, 255, 255);
// Add bounding boxes and text to the frame and show it to the user
auto displayFrame = [](std::string name, cv::Mat frame, std::vector<dai::ImgDetection>& detections) {
auto color = cv::Scalar(255, 0, 0);
// nn data, being the bounding box locations, are in <0..1> range - they need to be normalized with frame width/height
for(auto& detection : detections) {
int x1 = detection.xmin * frame.cols;
int y1 = detection.ymin * frame.rows;
int x2 = detection.xmax * frame.cols;
int y2 = detection.ymax * frame.rows;
uint32_t labelIndex = detection.label;
std::string labelStr = to_string(labelIndex);
if(labelIndex < labelMap.size()) {
labelStr = labelMap[labelIndex];
}
cv::putText(frame, labelStr, cv::Point(x1 + 10, y1 + 20), cv::FONT_HERSHEY_TRIPLEX, 0.5, 255);
std::stringstream confStr;
confStr << std::fixed << std::setprecision(2) << detection.confidence * 100;
cv::putText(frame, confStr.str(), cv::Point(x1 + 10, y1 + 40), cv::FONT_HERSHEY_TRIPLEX, 0.5, 255);
cv::rectangle(frame, cv::Rect(cv::Point(x1, y1), cv::Point(x2, y2)), color, cv::FONT_HERSHEY_SIMPLEX);
}
// Show the frame
cv::imshow(name, frame);
};
while(true) {
std::shared_ptr<dai::ImgFrame> inRgb;
std::shared_ptr<dai::ImgDetections> inDet;
if(syncNN) {
inRgb = qRgb->get<dai::ImgFrame>();
inDet = qDet->get<dai::ImgDetections>();
} else {
inRgb = qRgb->tryGet<dai::ImgFrame>();
inDet = qDet->tryGet<dai::ImgDetections>();
}
counter++;
auto currentTime = steady_clock::now();
auto elapsed = duration_cast<duration<float>>(currentTime - startTime);
if(elapsed > seconds(1)) {
fps = counter / elapsed.count();
counter = 0;
startTime = currentTime;
}
if(inRgb) {
frame = inRgb->getCvFrame();
std::stringstream fpsStr;
fpsStr << "NN fps: " << std::fixed << std::setprecision(2) << fps;
cv::putText(frame, fpsStr.str(), cv::Point(2, inRgb->getHeight() - 4), cv::FONT_HERSHEY_TRIPLEX, 0.4, color2);
}
if(inDet) {
detections = inDet->detections;
}
if(!frame.empty()) {
displayFrame("rgb", frame, detections);
}
int key = cv::waitKey(1);
if(key == 'q' || key == 'Q') {
return 0;
}
}
return 0;
}
|