Mono & MobilenetSSD & Depth¶
This example shows how to run MobileNetv2SSD on the left grayscale camera in parallel with running the disparity depth results, displaying both the depth map and the right grayscale stream, with the bounding box from the neural network overlaid. It’s a combination of Depth Preview and Mono & MobilenetSSD.
Similar samples:
Demo¶
Setup¶
Please run the install script to download all required dependencies. Please note that this script must be ran from git context, so you have to download the depthai-python repository first and then run the script
git clone https://github.com/luxonis/depthai-python.git
cd depthai-python/examples
python3 install_requirements.py
For additional information, please follow installation guide
This example script requires external file(s) to run. If you are using:
depthai-python, run
python3 examples/install_requirements.py
to download required file(s)dephtai-core, required file(s) will get downloaded automatically when building the example
Source code¶
Also available on GitHub
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 | #!/usr/bin/env python3
from pathlib import Path
import sys
import cv2
import depthai as dai
import numpy as np
# Get argument first
nnPath = str((Path(__file__).parent / Path('../models/mobilenet-ssd_openvino_2021.4_6shave.blob')).resolve().absolute())
if len(sys.argv) > 1:
nnPath = sys.argv[1]
if not Path(nnPath).exists():
import sys
raise FileNotFoundError(f'Required file/s not found, please run "{sys.executable} install_requirements.py"')
# MobilenetSSD label nnLabels
labelMap = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow",
"diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
# Create pipeline
pipeline = dai.Pipeline()
# Define sources and outputs
monoRight = pipeline.create(dai.node.MonoCamera)
monoLeft = pipeline.create(dai.node.MonoCamera)
stereo = pipeline.create(dai.node.StereoDepth)
manip = pipeline.create(dai.node.ImageManip)
nn = pipeline.create(dai.node.MobileNetDetectionNetwork)
nnOut = pipeline.create(dai.node.XLinkOut)
disparityOut = pipeline.create(dai.node.XLinkOut)
xoutRight = pipeline.create(dai.node.XLinkOut)
disparityOut.setStreamName("disparity")
xoutRight.setStreamName("rectifiedRight")
nnOut.setStreamName("nn")
# Properties
monoRight.setCamera("right")
monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
monoLeft.setCamera("left")
monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
# Produce the depth map (using disparity output as it's easier to visualize depth this way)
stereo.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
stereo.setRectifyEdgeFillColor(0) # Black, to better see the cutout from rectification (black stripe on the edges)
# Convert the grayscale frame into the nn-acceptable form
manip.initialConfig.setResize(300, 300)
# The NN model expects BGR input. By default ImageManip output type would be same as input (gray in this case)
manip.initialConfig.setFrameType(dai.ImgFrame.Type.BGR888p)
# Define a neural network that will make predictions based on the source frames
nn.setConfidenceThreshold(0.5)
nn.setBlobPath(nnPath)
nn.setNumInferenceThreads(2)
nn.input.setBlocking(False)
# Linking
monoRight.out.link(stereo.right)
monoLeft.out.link(stereo.left)
stereo.rectifiedRight.link(manip.inputImage)
stereo.disparity.link(disparityOut.input)
manip.out.link(nn.input)
manip.out.link(xoutRight.input)
nn.out.link(nnOut.input)
# Connect to device and start pipeline
with dai.Device(pipeline) as device:
# Output queues will be used to get the grayscale / depth frames and nn data from the outputs defined above
qRight = device.getOutputQueue("rectifiedRight", maxSize=4, blocking=False)
qDisparity = device.getOutputQueue("disparity", maxSize=4, blocking=False)
qDet = device.getOutputQueue("nn", maxSize=4, blocking=False)
rightFrame = None
disparityFrame = None
detections = []
# nn data, being the bounding box locations, are in <0..1> range - they need to be normalized with frame width/height
def frameNorm(frame, bbox):
normVals = np.full(len(bbox), frame.shape[0])
normVals[::2] = frame.shape[1]
return (np.clip(np.array(bbox), 0, 1) * normVals).astype(int)
# Add bounding boxes and text to the frame and show it to the user
def show(name, frame):
color = (255, 0, 0)
for detection in detections:
bbox = frameNorm(frame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax))
cv2.putText(frame, labelMap[detection.label], (bbox[0] + 10, bbox[1] + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)
cv2.putText(frame, f"{int(detection.confidence * 100)}%", (bbox[0] + 10, bbox[1] + 40), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)
cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color, 2)
# Show the frame
cv2.imshow(name, frame)
disparityMultiplier = 255 / stereo.initialConfig.getMaxDisparity()
while True:
# Instead of get (blocking), we use tryGet (non-blocking) which will return the available data or None otherwise
if qDet.has():
detections = qDet.get().detections
if qRight.has():
rightFrame = qRight.get().getCvFrame()
if qDisparity.has():
# Frame is transformed, normalized, and color map will be applied to highlight the depth info
disparityFrame = qDisparity.get().getFrame()
disparityFrame = (disparityFrame*disparityMultiplier).astype(np.uint8)
# Available color maps: https://docs.opencv.org/3.4/d3/d50/group__imgproc__colormap.html
disparityFrame = cv2.applyColorMap(disparityFrame, cv2.COLORMAP_JET)
show("disparity", disparityFrame)
if rightFrame is not None:
show("rectified right", rightFrame)
if cv2.waitKey(1) == ord('q'):
break
|
Also available on GitHub
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 | #include <iostream>
// Includes common necessary includes for development using depthai library
#include "depthai/depthai.hpp"
// MobilenetSSD label texts
static const std::vector<std::string> labelMap = {"background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus",
"car", "cat", "chair", "cow", "diningtable", "dog", "horse",
"motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
int main(int argc, char** argv) {
using namespace std;
// Default blob path provided by Hunter private data download
// Applicable for easier example usage only
std::string nnPath(BLOB_PATH);
// If path to blob specified, use that
if(argc > 1) {
nnPath = std::string(argv[1]);
}
// Print which blob we are using
printf("Using blob at path: %s\n", nnPath.c_str());
// Create pipeline
dai::Pipeline pipeline;
// Define sources and outputs
auto monoRight = pipeline.create<dai::node::MonoCamera>();
auto monoLeft = pipeline.create<dai::node::MonoCamera>();
auto stereo = pipeline.create<dai::node::StereoDepth>();
auto manip = pipeline.create<dai::node::ImageManip>();
auto nn = pipeline.create<dai::node::MobileNetDetectionNetwork>();
auto disparityOut = pipeline.create<dai::node::XLinkOut>();
auto xoutRight = pipeline.create<dai::node::XLinkOut>();
auto nnOut = pipeline.create<dai::node::XLinkOut>();
disparityOut->setStreamName("disparity");
xoutRight->setStreamName("rectifiedRight");
nnOut->setStreamName("nn");
// Properties
monoRight->setCamera("right");
monoRight->setResolution(dai::MonoCameraProperties::SensorResolution::THE_400_P);
monoLeft->setCamera("left");
monoLeft->setResolution(dai::MonoCameraProperties::SensorResolution::THE_400_P);
// Produce the depth map (using disparity output as it's easier to visualize depth this way)
stereo->setDefaultProfilePreset(dai::node::StereoDepth::PresetMode::HIGH_DENSITY);
stereo->setRectifyEdgeFillColor(0); // Black, to better see the cutout from rectification (black stripe on the edges)
// Convert the grayscale frame into the nn-acceptable form
manip->initialConfig.setResize(300, 300);
// The NN model expects BGR input. By default ImageManip output type would be same as input (gray in this case)
manip->initialConfig.setFrameType(dai::ImgFrame::Type::BGR888p);
// Define a neural network that will make predictions based on the source frames
nn->setConfidenceThreshold(0.5);
nn->setBlobPath(nnPath);
nn->setNumInferenceThreads(2);
nn->input.setBlocking(false);
// Linking
monoRight->out.link(stereo->right);
monoLeft->out.link(stereo->left);
stereo->rectifiedRight.link(manip->inputImage);
stereo->disparity.link(disparityOut->input);
manip->out.link(nn->input);
manip->out.link(xoutRight->input);
nn->out.link(nnOut->input);
// Connect to device and start pipeline
dai::Device device(pipeline);
// Output queues will be used to get the grayscale / depth frames and nn data from the outputs defined above
auto qRight = device.getOutputQueue("rectifiedRight", 4, false);
auto qDisparity = device.getOutputQueue("disparity", 4, false);
auto qDet = device.getOutputQueue("nn", 4, false);
cv::Mat rightFrame;
cv::Mat disparityFrame;
std::vector<dai::ImgDetection> detections;
// Add bounding boxes and text to the frame and show it to the user
auto show = [](std::string name, cv::Mat frame, std::vector<dai::ImgDetection>& detections) {
auto color = cv::Scalar(255, 192, 203);
// nn data, being the bounding box locations, are in <0..1> range - they need to be normalized with frame width/height
for(auto& detection : detections) {
int x1 = detection.xmin * frame.cols;
int y1 = detection.ymin * frame.rows;
int x2 = detection.xmax * frame.cols;
int y2 = detection.ymax * frame.rows;
uint32_t labelIndex = detection.label;
std::string labelStr = to_string(labelIndex);
if(labelIndex < labelMap.size()) {
labelStr = labelMap[labelIndex];
}
cv::putText(frame, labelStr, cv::Point(x1 + 10, y1 + 20), cv::FONT_HERSHEY_TRIPLEX, 0.5, color);
std::stringstream confStr;
confStr << std::fixed << std::setprecision(2) << detection.confidence * 100;
cv::putText(frame, confStr.str(), cv::Point(x1 + 10, y1 + 40), cv::FONT_HERSHEY_TRIPLEX, 0.5, color);
cv::rectangle(frame, cv::Rect(cv::Point(x1, y1), cv::Point(x2, y2)), color, cv::FONT_HERSHEY_SIMPLEX);
}
// Show the frame
cv::imshow(name, frame);
};
float disparityMultiplier = 255 / stereo->initialConfig.getMaxDisparity();
while(true) {
// Instead of get (blocking), we use tryGet (non-blocking) which will return the available data or None otherwise
auto inRight = qRight->tryGet<dai::ImgFrame>();
auto inDet = qDet->tryGet<dai::ImgDetections>();
auto inDisparity = qDisparity->tryGet<dai::ImgFrame>();
if(inDisparity) {
// Frame is transformed, normalized, and color map will be applied to highlight the depth info
disparityFrame = inDisparity->getFrame();
disparityFrame.convertTo(disparityFrame, CV_8UC1, disparityMultiplier);
// Available color maps: https://docs.opencv.org/3.4/d3/d50/group__imgproc__colormap.html
cv::applyColorMap(disparityFrame, disparityFrame, cv::COLORMAP_JET);
show("disparity", disparityFrame, detections);
}
if(!rightFrame.empty()) {
show("rectified right", rightFrame, detections);
}
int key = cv::waitKey(1);
if(key == 'q' || key == 'Q') return 0;
}
return 0;
}
|