Auto Exposure on ROI¶
This example shows how to dynamically set the Auto Exposure (AE) of the RGB camera dynamically, during application runtime, based on bounding box position.
By default, AutoExposure region is adjusted based on neural network output. If desired, the region can be set manually. You can do so by pressing one of the following buttons:
w - move AE region up
s - move AE region down
a - move AE region left
d - move AE region right
n - deactivate manual region (switch back to nn-based roi)
Demo¶
Setup¶
Please run the install script to download all required dependencies. Please note that this script must be ran from git context, so you have to download the depthai-python repository first and then run the script
git clone https://github.com/luxonis/depthai-python.git
cd depthai-python/examples
python3 install_requirements.py
For additional information, please follow installation guide
This example script requires external file(s) to run. If you are using:
depthai-python, run
python3 examples/install_requirements.py
to download required file(s)dephtai-core, required file(s) will get downloaded automatically when building the example
Source code¶
Also available on GitHub
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 | #!/usr/bin/env python3
from pathlib import Path
import sys
import cv2
import depthai as dai
import numpy as np
# Press WASD to move a manual ROI window for auto-exposure control.
# Press N to go back to the region controlled by the NN detections.
# Get argument first
nnPath = str((Path(__file__).parent / Path('../models/mobilenet-ssd_openvino_2021.4_6shave.blob')).resolve().absolute())
if len(sys.argv) > 1:
nnPath = sys.argv[1]
if not Path(nnPath).exists():
import sys
raise FileNotFoundError(f'Required file/s not found, please run "{sys.executable} install_requirements.py"')
previewSize = (300, 300)
# Create pipeline
pipeline = dai.Pipeline()
# Define source and outputs
camRgb = pipeline.create(dai.node.ColorCamera)
camRgb.setPreviewSize(*previewSize)
camRgb.setInterleaved(False)
camControlIn = pipeline.create(dai.node.XLinkIn)
camControlIn.setStreamName('camControl')
camControlIn.out.link(camRgb.inputControl)
# Define a neural network that will make predictions based on the source frames
nn = pipeline.create(dai.node.MobileNetDetectionNetwork)
nn.setConfidenceThreshold(0.5)
nn.setBlobPath(nnPath)
nn.setNumInferenceThreads(2)
nn.input.setBlocking(False)
camRgb.preview.link(nn.input)
# Linking
xoutRgb = pipeline.create(dai.node.XLinkOut)
xoutRgb.setStreamName("rgb")
camRgb.preview.link(xoutRgb.input)
nnOut = pipeline.create(dai.node.XLinkOut)
nnOut.setStreamName("nn")
nn.out.link(nnOut.input)
# MobilenetSSD label texts
labelMap = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow",
"diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
def clamp(num, v0, v1):
return max(v0, min(num, v1))
def asControl(roi):
camControl = dai.CameraControl()
camControl.setAutoExposureRegion(*roi)
return camControl
class AutoExposureRegion:
step = 10
position = (0, 0)
size = (100, 100)
resolution = camRgb.getResolutionSize()
maxDims = previewSize[0], previewSize[1]
def grow(self, x=0, y=0):
self.size = (
clamp(x + self.size[0], 1, self.maxDims[0]),
clamp(y + self.size[1], 1, self.maxDims[1])
)
def move(self, x=0, y=0):
self.position = (
clamp(x + self.position[0], 0, self.maxDims[0]),
clamp(y + self.position[1], 0, self.maxDims[1])
)
def endPosition(self):
return (
clamp(self.position[0] + self.size[0], 0, self.maxDims[0]),
clamp(self.position[1] + self.size[1], 0, self.maxDims[1]),
)
def toRoi(self):
roi = np.array([*self.position, *self.size])
# Convert to absolute camera coordinates
roi = roi * self.resolution[1] // 300
roi[0] += (self.resolution[0] - self.resolution[1]) // 2 # x offset for device crop
return roi
@staticmethod
def bboxToRoi(bbox):
startX, startY = bbox[:2]
width, height = bbox[2] - startX, bbox[3] - startY
roi = frameNorm(np.empty(camRgb.getResolutionSize()), (startX, startY, width, height))
return roi
# Connect to device and start pipeline
with dai.Device(pipeline) as device:
# Output queues will be used to get the rgb frames and nn data from the outputs defined above
qControl = device.getInputQueue(name="camControl")
qRgb = device.getOutputQueue(name="rgb", maxSize=4, blocking=False)
qDet = device.getOutputQueue(name="nn", maxSize=4, blocking=False)
frame = None
detections = []
nnRegion = True
region = AutoExposureRegion()
# nn data (bounding box locations) are in <0..1> range - they need to be normalized with frame width/height
def frameNorm(frame, bbox):
normVals = np.full(len(bbox), frame.shape[0])
normVals[::2] = frame.shape[1]
return (np.clip(np.array(bbox), 0, 1) * normVals).astype(int)
def displayFrame(name, frame):
for detection in detections:
bbox = frameNorm(frame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax))
cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (255, 0, 0), 2)
cv2.putText(frame, labelMap[detection.label], (bbox[0] + 10, bbox[1] + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
cv2.putText(frame, f"{int(detection.confidence * 100)}%", (bbox[0] + 10, bbox[1] + 40), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
if not nnRegion:
cv2.rectangle(frame, region.position, region.endPosition(), (0, 255, 0), 2)
cv2.imshow(name, frame)
while True:
# Instead of get (blocking), we use tryGet (non-blocking) which will return the available data or None otherwise
inRgb = qRgb.tryGet()
inDet = qDet.tryGet()
if inRgb is not None:
frame = inRgb.getCvFrame()
if inDet is not None:
detections = inDet.detections
if nnRegion and len(detections) > 0:
bbox = (detections[0].xmin, detections[0].ymin, detections[0].xmax, detections[0].ymax)
qControl.send(asControl(AutoExposureRegion.bboxToRoi(bbox)))
if frame is not None:
displayFrame("rgb", frame)
key = cv2.waitKey(1)
if key == ord('n'):
print("AE ROI controlled by NN")
nnRegion = True
elif key in [ord('w'), ord('a'), ord('s'), ord('d'), ord('+'), ord('-')]:
nnRegion = False
if key == ord('a'):
region.move(x=-region.step)
if key == ord('d'):
region.move(x=region.step)
if key == ord('w'):
region.move(y=-region.step)
if key == ord('s'):
region.move(y=region.step)
if key == ord('+'):
region.grow(x=10, y=10)
region.step = region.step + 1
if key == ord('-'):
region.grow(x=-10, y=-10)
region.step = max(region.step - 1, 1)
print(f"Setting static AE ROI: {region.toRoi()} (on frame: {[*region.position, *region.endPosition()]})")
qControl.send(asControl(region.toRoi()))
elif key == ord('q'):
break
|