Stereo Depth from host¶
This example shows depth map from host using stereo images. There are 3 depth modes which you can select inside the code:
lr_check: used for better occlusion handling. For more information click here
extended_disparity: suitable for short range objects. For more information click here
subpixel: suitable for long range. For more information click here
Otherwise a median with kernel_7x7 is activated.
Similar samples:
Setup¶
Please run the install script to download all required dependencies. Please note that this script must be ran from git context, so you have to download the depthai-python repository first and then run the script
git clone https://github.com/luxonis/depthai-python.git
cd depthai-python/examples
python3 install_requirements.py
For additional information, please follow installation guide
This example also requires dataset folder - you can download it from here
Source code¶
Also available on GitHub
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 | #!/usr/bin/env python3
import cv2
import numpy as np
import depthai as dai
from time import sleep
import datetime
import argparse
from pathlib import Path
import math
import os, re
datasetDefault = str((Path(__file__).parent / Path("../models/dataset")).resolve().absolute())
parser = argparse.ArgumentParser()
parser.add_argument("-p", "--dataset", nargs="?", help="Path to recorded frames", default=None)
parser.add_argument("-d", "--debug", action="store_true", help="Enable debug outputs.")
parser.add_argument("-e", "--evaluate", help="Evaluate the disparity calculation.", default=None)
parser.add_argument("-dumpdispcost", "--dumpdisparitycostvalues", action="store_true", help="Dumps the disparity cost values for each disparity range. 96 byte for each pixel.")
parser.add_argument("--download", action="store_true", help="Downloads the 2014 Middlebury dataset.")
parser.add_argument("--calibration", help="Path to calibration file", default=None)
parser.add_argument("--rectify", action="store_true", help="Enable rectified streams")
parser.add_argument("--swapLR", action="store_true", help="Swap left and right cameras.")
args = parser.parse_args()
if args.evaluate is not None and args.dataset is not None:
import sys
raise ValueError("Cannot use both --dataset and --evaluate arguments at the same time.")
evaluation_mode = args.evaluate is not None
args.dataset = args.dataset or datasetDefault
if args.download and args.evaluate is None:
import sys
raise ValueError("Cannot use --download without --evaluate argument.")
if args.evaluate is None and not Path(args.dataset).exists():
import sys
raise FileNotFoundError(f"Required file/s not found, please run '{sys.executable} install_requirements.py'")
if args.evaluate is not None and not args.download and not Path(args.evaluate).exists():
import sys
raise FileNotFoundError(f"Evaluation dataset path does not exist, use the --evaluate argument to specify the path.")
if args.evaluate is not None and args.download and not Path(args.evaluate).exists():
os.makedirs(args.evaluate)
def download_2014_middlebury(data_path):
import requests, zipfile, io
url = "https://vision.middlebury.edu/stereo/data/scenes2014/zip/"
r = requests.get(url)
c = r.content
reg = re.compile(r"href=('|\")(.+\.zip)('|\")")
matches = reg.findall(c.decode("utf-8"))
files = [m[1] for m in matches]
for f in files:
if os.path.isdir(os.path.join(data_path, f[:-4])):
print(f"Skipping {f}")
else:
print(f"Downloading {f} from {url + f}")
r = requests.get(url + f)
print(f"Extracting {f} to {data_path}")
z = zipfile.ZipFile(io.BytesIO(r.content))
z.extractall(data_path)
if args.download:
download_2014_middlebury(args.evaluate)
if not evaluation_mode:
sys.exit(0)
class StereoConfigHandler:
class Trackbar:
def __init__(self, trackbarName, windowName, minValue, maxValue, defaultValue, handler):
self.min = minValue
self.max = maxValue
self.windowName = windowName
self.trackbarName = trackbarName
cv2.createTrackbar(trackbarName, windowName, minValue, maxValue, handler)
cv2.setTrackbarPos(trackbarName, windowName, defaultValue)
def set(self, value):
if value < self.min:
value = self.min
print(f"{self.trackbarName} min value is {self.min}")
if value > self.max:
value = self.max
print(f"{self.trackbarName} max value is {self.max}")
cv2.setTrackbarPos(self.trackbarName, self.windowName, value)
class CensusMaskHandler:
stateColor = [(0, 0, 0), (255, 255, 255)]
gridHeight = 50
gridWidth = 50
def fillRectangle(self, row, col):
src = self.gridList[row][col]["topLeft"]
dst = self.gridList[row][col]["bottomRight"]
stateColor = self.stateColor[1] if self.gridList[row][col]["state"] else self.stateColor[0]
self.changed = True
cv2.rectangle(self.gridImage, src, dst, stateColor, -1)
cv2.imshow(self.windowName, self.gridImage)
def clickCallback(self, event, x, y, flags, param):
if event == cv2.EVENT_LBUTTONDOWN:
col = x * (self.gridSize[1]) // self.width
row = y * (self.gridSize[0]) // self.height
self.gridList[row][col]["state"] = not self.gridList[row][col]["state"]
self.fillRectangle(row, col)
def __init__(self, windowName, gridSize):
self.gridSize = gridSize
self.windowName = windowName
self.changed = False
cv2.namedWindow(self.windowName)
self.width = StereoConfigHandler.CensusMaskHandler.gridWidth * self.gridSize[1]
self.height = StereoConfigHandler.CensusMaskHandler.gridHeight * self.gridSize[0]
self.gridImage = np.zeros((self.height + 50, self.width, 3), np.uint8)
cv2.putText(self.gridImage, "Click on grid to change mask!", (0, self.height+20), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 255))
cv2.putText(self.gridImage, "White: ON | Black: OFF", (0, self.height+40), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 255))
self.gridList = [[dict() for _ in range(self.gridSize[1])] for _ in range(self.gridSize[0])]
for row in range(self.gridSize[0]):
rowFactor = self.height // self.gridSize[0]
srcY = row*rowFactor + 1
dstY = (row+1)*rowFactor - 1
for col in range(self.gridSize[1]):
colFactor = self.width // self.gridSize[1]
srcX = col*colFactor + 1
dstX = (col+1)*colFactor - 1
src = (srcX, srcY)
dst = (dstX, dstY)
self.gridList[row][col]["topLeft"] = src
self.gridList[row][col]["bottomRight"] = dst
self.gridList[row][col]["state"] = False
self.fillRectangle(row, col)
cv2.setMouseCallback(self.windowName, self.clickCallback)
cv2.imshow(self.windowName, self.gridImage)
def getMask(self) -> np.uint64:
mask = np.uint64(0)
for row in range(self.gridSize[0]):
for col in range(self.gridSize[1]):
if self.gridList[row][col]["state"]:
pos = row*self.gridSize[1] + col
mask = np.bitwise_or(mask, np.uint64(1) << np.uint64(pos))
return mask
def setMask(self, _mask: np.uint64):
mask = np.uint64(_mask)
for row in range(self.gridSize[0]):
for col in range(self.gridSize[1]):
pos = row*self.gridSize[1] + col
if np.bitwise_and(mask, np.uint64(1) << np.uint64(pos)):
self.gridList[row][col]["state"] = True
else:
self.gridList[row][col]["state"] = False
self.fillRectangle(row, col)
def isChanged(self):
changed = self.changed
self.changed = False
return changed
def destroyWindow(self):
cv2.destroyWindow(self.windowName)
censusMaskHandler = None
newConfig = False
config = None
trSigma = list()
trConfidence = list()
trLrCheck = list()
trFractionalBits = list()
trLineqAlpha = list()
trLineqBeta = list()
trLineqThreshold = list()
trCostAggregationP1 = list()
trCostAggregationP2 = list()
trTemporalAlpha = list()
trTemporalDelta = list()
trThresholdMinRange = list()
trThresholdMaxRange = list()
trSpeckleRange = list()
trSpatialAlpha = list()
trSpatialDelta = list()
trSpatialHoleFilling = list()
trSpatialNumIterations = list()
trDecimationFactor = list()
trDisparityShift = list()
trCenterAlignmentShift = list()
trInvalidateEdgePixels = list()
def trackbarSigma(value):
StereoConfigHandler.config.postProcessing.bilateralSigmaValue = value
StereoConfigHandler.newConfig = True
for tr in StereoConfigHandler.trSigma:
tr.set(value)
def trackbarConfidence(value):
StereoConfigHandler.config.costMatching.confidenceThreshold = value
StereoConfigHandler.newConfig = True
for tr in StereoConfigHandler.trConfidence:
tr.set(value)
def trackbarLrCheckThreshold(value):
StereoConfigHandler.config.algorithmControl.leftRightCheckThreshold = value
StereoConfigHandler.newConfig = True
for tr in StereoConfigHandler.trLrCheck:
tr.set(value)
def trackbarFractionalBits(value):
StereoConfigHandler.config.algorithmControl.subpixelFractionalBits = value
StereoConfigHandler.newConfig = True
for tr in StereoConfigHandler.trFractionalBits:
tr.set(value)
def trackbarLineqAlpha(value):
StereoConfigHandler.config.costMatching.linearEquationParameters.alpha = value
StereoConfigHandler.newConfig = True
for tr in StereoConfigHandler.trLineqAlpha:
tr.set(value)
def trackbarLineqBeta(value):
StereoConfigHandler.config.costMatching.linearEquationParameters.beta = value
StereoConfigHandler.newConfig = True
for tr in StereoConfigHandler.trLineqBeta:
tr.set(value)
def trackbarLineqThreshold(value):
StereoConfigHandler.config.costMatching.linearEquationParameters.threshold = value
StereoConfigHandler.newConfig = True
for tr in StereoConfigHandler.trLineqThreshold:
tr.set(value)
def trackbarCostAggregationP1(value):
StereoConfigHandler.config.costAggregation.horizontalPenaltyCostP1 = value
StereoConfigHandler.config.costAggregation.verticalPenaltyCostP1 = value
StereoConfigHandler.newConfig = True
for tr in StereoConfigHandler.trCostAggregationP1:
tr.set(value)
def trackbarCostAggregationP2(value):
StereoConfigHandler.config.costAggregation.horizontalPenaltyCostP2 = value
StereoConfigHandler.config.costAggregation.verticalPenaltyCostP2 = value
StereoConfigHandler.newConfig = True
for tr in StereoConfigHandler.trCostAggregationP2:
tr.set(value)
def trackbarTemporalFilterAlpha(value):
StereoConfigHandler.config.postProcessing.temporalFilter.alpha = value / 100.
StereoConfigHandler.newConfig = True
for tr in StereoConfigHandler.trTemporalAlpha:
tr.set(value)
def trackbarTemporalFilterDelta(value):
StereoConfigHandler.config.postProcessing.temporalFilter.delta = value
StereoConfigHandler.newConfig = True
for tr in StereoConfigHandler.trTemporalDelta:
tr.set(value)
def trackbarSpatialFilterAlpha(value):
StereoConfigHandler.config.postProcessing.spatialFilter.alpha = value / 100.
StereoConfigHandler.newConfig = True
for tr in StereoConfigHandler.trSpatialAlpha:
tr.set(value)
def trackbarSpatialFilterDelta(value):
StereoConfigHandler.config.postProcessing.spatialFilter.delta = value
StereoConfigHandler.newConfig = True
for tr in StereoConfigHandler.trSpatialDelta:
tr.set(value)
def trackbarSpatialFilterHoleFillingRadius(value):
StereoConfigHandler.config.postProcessing.spatialFilter.holeFillingRadius = value
StereoConfigHandler.newConfig = True
for tr in StereoConfigHandler.trSpatialHoleFilling:
tr.set(value)
def trackbarSpatialFilterNumIterations(value):
StereoConfigHandler.config.postProcessing.spatialFilter.numIterations = value
StereoConfigHandler.newConfig = True
for tr in StereoConfigHandler.trSpatialNumIterations:
tr.set(value)
def trackbarThresholdMinRange(value):
StereoConfigHandler.config.postProcessing.thresholdFilter.minRange = value * 1000
StereoConfigHandler.newConfig = True
for tr in StereoConfigHandler.trThresholdMinRange:
tr.set(value)
def trackbarThresholdMaxRange(value):
StereoConfigHandler.config.postProcessing.thresholdFilter.maxRange = value * 1000
StereoConfigHandler.newConfig = True
for tr in StereoConfigHandler.trThresholdMaxRange:
tr.set(value)
def trackbarSpeckleRange(value):
StereoConfigHandler.config.postProcessing.speckleFilter.speckleRange = value
StereoConfigHandler.newConfig = True
for tr in StereoConfigHandler.trSpeckleRange:
tr.set(value)
def trackbarDecimationFactor(value):
StereoConfigHandler.config.postProcessing.decimationFilter.decimationFactor = value
StereoConfigHandler.newConfig = True
for tr in StereoConfigHandler.trDecimationFactor:
tr.set(value)
def trackbarDisparityShift(value):
StereoConfigHandler.config.algorithmControl.disparityShift = value
StereoConfigHandler.newConfig = True
for tr in StereoConfigHandler.trDisparityShift:
tr.set(value)
def trackbarCenterAlignmentShift(value):
if StereoConfigHandler.config.algorithmControl.depthAlign != dai.StereoDepthConfig.AlgorithmControl.DepthAlign.CENTER:
print("Center alignment shift factor requires CENTER alignment enabled!")
return
StereoConfigHandler.config.algorithmControl.centerAlignmentShiftFactor = value / 100.
print(f"centerAlignmentShiftFactor: {StereoConfigHandler.config.algorithmControl.centerAlignmentShiftFactor:.2f}")
StereoConfigHandler.newConfig = True
for tr in StereoConfigHandler.trCenterAlignmentShift:
tr.set(value)
def trackbarInvalidateEdgePixels(value):
StereoConfigHandler.config.algorithmControl.numInvalidateEdgePixels = value
print(f"numInvalidateEdgePixels: {StereoConfigHandler.config.algorithmControl.numInvalidateEdgePixels:.2f}")
StereoConfigHandler.newConfig = True
for tr in StereoConfigHandler.trInvalidateEdgePixels:
tr.set(value)
def handleKeypress(key, stereoDepthConfigInQueue):
if key == ord("m"):
StereoConfigHandler.newConfig = True
medianSettings = [dai.MedianFilter.MEDIAN_OFF, dai.MedianFilter.KERNEL_3x3, dai.MedianFilter.KERNEL_5x5, dai.MedianFilter.KERNEL_7x7]
currentMedian = StereoConfigHandler.config.postProcessing.median
nextMedian = medianSettings[(medianSettings.index(currentMedian)+1) % len(medianSettings)]
print(f"Changing median to {nextMedian.name} from {currentMedian.name}")
StereoConfigHandler.config.postProcessing.median = nextMedian
if key == ord("w"):
StereoConfigHandler.newConfig = True
StereoConfigHandler.config.postProcessing.spatialFilter.enable = not StereoConfigHandler.config.postProcessing.spatialFilter.enable
state = "on" if StereoConfigHandler.config.postProcessing.spatialFilter.enable else "off"
print(f"Spatial filter {state}")
if key == ord("t"):
StereoConfigHandler.newConfig = True
StereoConfigHandler.config.postProcessing.temporalFilter.enable = not StereoConfigHandler.config.postProcessing.temporalFilter.enable
state = "on" if StereoConfigHandler.config.postProcessing.temporalFilter.enable else "off"
print(f"Temporal filter {state}")
if key == ord("s"):
StereoConfigHandler.newConfig = True
StereoConfigHandler.config.postProcessing.speckleFilter.enable = not StereoConfigHandler.config.postProcessing.speckleFilter.enable
state = "on" if StereoConfigHandler.config.postProcessing.speckleFilter.enable else "off"
print(f"Speckle filter {state}")
if key == ord("r"):
StereoConfigHandler.newConfig = True
temporalSettings = [dai.StereoDepthConfig.PostProcessing.TemporalFilter.PersistencyMode.PERSISTENCY_OFF,
dai.StereoDepthConfig.PostProcessing.TemporalFilter.PersistencyMode.VALID_8_OUT_OF_8,
dai.StereoDepthConfig.PostProcessing.TemporalFilter.PersistencyMode.VALID_2_IN_LAST_3,
dai.StereoDepthConfig.PostProcessing.TemporalFilter.PersistencyMode.VALID_2_IN_LAST_4,
dai.StereoDepthConfig.PostProcessing.TemporalFilter.PersistencyMode.VALID_2_OUT_OF_8,
dai.StereoDepthConfig.PostProcessing.TemporalFilter.PersistencyMode.VALID_1_IN_LAST_2,
dai.StereoDepthConfig.PostProcessing.TemporalFilter.PersistencyMode.VALID_1_IN_LAST_5,
dai.StereoDepthConfig.PostProcessing.TemporalFilter.PersistencyMode.VALID_1_IN_LAST_8,
dai.StereoDepthConfig.PostProcessing.TemporalFilter.PersistencyMode.PERSISTENCY_INDEFINITELY,
]
currentTemporal = StereoConfigHandler.config.postProcessing.temporalFilter.persistencyMode
nextTemporal = temporalSettings[(temporalSettings.index(currentTemporal)+1) % len(temporalSettings)]
print(f"Changing temporal persistency to {nextTemporal.name} from {currentTemporal.name}")
StereoConfigHandler.config.postProcessing.temporalFilter.persistencyMode = nextTemporal
if key == ord("n"):
StereoConfigHandler.newConfig = True
decimationSettings = [dai.StereoDepthConfig.PostProcessing.DecimationFilter.DecimationMode.PIXEL_SKIPPING,
dai.StereoDepthConfig.PostProcessing.DecimationFilter.DecimationMode.NON_ZERO_MEDIAN,
dai.StereoDepthConfig.PostProcessing.DecimationFilter.DecimationMode.NON_ZERO_MEAN,
]
currentDecimation = StereoConfigHandler.config.postProcessing.decimationFilter.decimationMode
nextDecimation = decimationSettings[(decimationSettings.index(currentDecimation)+1) % len(decimationSettings)]
print(f"Changing decimation mode to {nextDecimation.name} from {currentDecimation.name}")
StereoConfigHandler.config.postProcessing.decimationFilter.decimationMode = nextDecimation
if key == ord("a"):
StereoConfigHandler.newConfig = True
alignmentSettings = [dai.StereoDepthConfig.AlgorithmControl.DepthAlign.RECTIFIED_RIGHT,
dai.StereoDepthConfig.AlgorithmControl.DepthAlign.RECTIFIED_LEFT,
dai.StereoDepthConfig.AlgorithmControl.DepthAlign.CENTER,
]
currentAlignment = StereoConfigHandler.config.algorithmControl.depthAlign
nextAlignment = alignmentSettings[(alignmentSettings.index(currentAlignment)+1) % len(alignmentSettings)]
print(f"Changing alignment mode to {nextAlignment.name} from {currentAlignment.name}")
StereoConfigHandler.config.algorithmControl.depthAlign = nextAlignment
elif key == ord("c"):
StereoConfigHandler.newConfig = True
censusSettings = [dai.StereoDepthConfig.CensusTransform.KernelSize.AUTO, dai.StereoDepthConfig.CensusTransform.KernelSize.KERNEL_5x5, dai.StereoDepthConfig.CensusTransform.KernelSize.KERNEL_7x7, dai.StereoDepthConfig.CensusTransform.KernelSize.KERNEL_7x9]
currentCensus = StereoConfigHandler.config.censusTransform.kernelSize
nextCensus = censusSettings[(censusSettings.index(currentCensus)+1) % len(censusSettings)]
if nextCensus != dai.StereoDepthConfig.CensusTransform.KernelSize.AUTO:
censusGridSize = [(5,5), (7,7), (7,9)]
censusDefaultMask = [np.uint64(0XA82415), np.uint64(0XAA02A8154055), np.uint64(0X2AA00AA805540155)]
censusGrid = censusGridSize[nextCensus]
censusMask = censusDefaultMask[nextCensus]
StereoConfigHandler.censusMaskHandler = StereoConfigHandler.CensusMaskHandler("Census mask", censusGrid)
StereoConfigHandler.censusMaskHandler.setMask(censusMask)
else:
print("Census mask config is not available in AUTO census kernel mode. Change using the 'c' key")
StereoConfigHandler.config.censusTransform.kernelMask = 0
StereoConfigHandler.censusMaskHandler.destroyWindow()
print(f"Changing census transform to {nextCensus.name} from {currentCensus.name}")
StereoConfigHandler.config.censusTransform.kernelSize = nextCensus
elif key == ord("d"):
StereoConfigHandler.newConfig = True
dispRangeSettings = [dai.StereoDepthConfig.CostMatching.DisparityWidth.DISPARITY_64, dai.StereoDepthConfig.CostMatching.DisparityWidth.DISPARITY_96]
currentDispRange = StereoConfigHandler.config.costMatching.disparityWidth
nextDispRange = dispRangeSettings[(dispRangeSettings.index(currentDispRange)+1) % len(dispRangeSettings)]
print(f"Changing disparity range to {nextDispRange.name} from {currentDispRange.name}")
StereoConfigHandler.config.costMatching.disparityWidth = nextDispRange
elif key == ord("f"):
StereoConfigHandler.newConfig = True
StereoConfigHandler.config.costMatching.enableCompanding = not StereoConfigHandler.config.costMatching.enableCompanding
state = "on" if StereoConfigHandler.config.costMatching.enableCompanding else "off"
print(f"Companding {state}")
elif key == ord("v"):
StereoConfigHandler.newConfig = True
StereoConfigHandler.config.censusTransform.enableMeanMode = not StereoConfigHandler.config.censusTransform.enableMeanMode
state = "on" if StereoConfigHandler.config.censusTransform.enableMeanMode else "off"
print(f"Census transform mean mode {state}")
elif key == ord("1"):
StereoConfigHandler.newConfig = True
StereoConfigHandler.config.algorithmControl.enableLeftRightCheck = not StereoConfigHandler.config.algorithmControl.enableLeftRightCheck
state = "on" if StereoConfigHandler.config.algorithmControl.enableLeftRightCheck else "off"
print(f"LR-check {state}")
elif key == ord("2"):
StereoConfigHandler.newConfig = True
StereoConfigHandler.config.algorithmControl.enableSubpixel = not StereoConfigHandler.config.algorithmControl.enableSubpixel
state = "on" if StereoConfigHandler.config.algorithmControl.enableSubpixel else "off"
print(f"Subpixel {state}")
elif key == ord("3"):
StereoConfigHandler.newConfig = True
StereoConfigHandler.config.algorithmControl.enableExtended = not StereoConfigHandler.config.algorithmControl.enableExtended
state = "on" if StereoConfigHandler.config.algorithmControl.enableExtended else "off"
print(f"Extended {state}")
censusMaskChanged = False
if StereoConfigHandler.censusMaskHandler is not None:
censusMaskChanged = StereoConfigHandler.censusMaskHandler.isChanged()
if censusMaskChanged:
StereoConfigHandler.config.censusTransform.kernelMask = StereoConfigHandler.censusMaskHandler.getMask()
StereoConfigHandler.newConfig = True
StereoConfigHandler.sendConfig(stereoDepthConfigInQueue)
def sendConfig(stereoDepthConfigInQueue):
if StereoConfigHandler.newConfig:
StereoConfigHandler.newConfig = False
configMessage = dai.StereoDepthConfig()
configMessage.set(StereoConfigHandler.config)
stereoDepthConfigInQueue.send(configMessage)
def updateDefaultConfig(config):
StereoConfigHandler.config = config
def registerWindow(stream):
cv2.namedWindow(stream, cv2.WINDOW_NORMAL)
StereoConfigHandler.trConfidence.append(StereoConfigHandler.Trackbar("Disparity confidence", stream, 0, 255, StereoConfigHandler.config.costMatching.confidenceThreshold, StereoConfigHandler.trackbarConfidence))
StereoConfigHandler.trSigma.append(StereoConfigHandler.Trackbar("Bilateral sigma", stream, 0, 100, StereoConfigHandler.config.postProcessing.bilateralSigmaValue, StereoConfigHandler.trackbarSigma))
StereoConfigHandler.trLrCheck.append(StereoConfigHandler.Trackbar("LR-check threshold", stream, 0, 16, StereoConfigHandler.config.algorithmControl.leftRightCheckThreshold, StereoConfigHandler.trackbarLrCheckThreshold))
StereoConfigHandler.trFractionalBits.append(StereoConfigHandler.Trackbar("Subpixel fractional bits", stream, 3, 5, StereoConfigHandler.config.algorithmControl.subpixelFractionalBits, StereoConfigHandler.trackbarFractionalBits))
StereoConfigHandler.trDisparityShift.append(StereoConfigHandler.Trackbar("Disparity shift", stream, 0, 100, StereoConfigHandler.config.algorithmControl.disparityShift, StereoConfigHandler.trackbarDisparityShift))
StereoConfigHandler.trCenterAlignmentShift.append(StereoConfigHandler.Trackbar("Center alignment shift factor", stream, 0, 100, StereoConfigHandler.config.algorithmControl.centerAlignmentShiftFactor, StereoConfigHandler.trackbarCenterAlignmentShift))
StereoConfigHandler.trInvalidateEdgePixels.append(StereoConfigHandler.Trackbar("Invalidate edge pixels", stream, 0, 100, StereoConfigHandler.config.algorithmControl.numInvalidateEdgePixels, StereoConfigHandler.trackbarInvalidateEdgePixels))
StereoConfigHandler.trLineqAlpha.append(StereoConfigHandler.Trackbar("Linear equation alpha", stream, 0, 15, StereoConfigHandler.config.costMatching.linearEquationParameters.alpha, StereoConfigHandler.trackbarLineqAlpha))
StereoConfigHandler.trLineqBeta.append(StereoConfigHandler.Trackbar("Linear equation beta", stream, 0, 15, StereoConfigHandler.config.costMatching.linearEquationParameters.beta, StereoConfigHandler.trackbarLineqBeta))
StereoConfigHandler.trLineqThreshold.append(StereoConfigHandler.Trackbar("Linear equation threshold", stream, 0, 255, StereoConfigHandler.config.costMatching.linearEquationParameters.threshold, StereoConfigHandler.trackbarLineqThreshold))
StereoConfigHandler.trCostAggregationP1.append(StereoConfigHandler.Trackbar("Cost aggregation P1", stream, 0, 500, StereoConfigHandler.config.costAggregation.horizontalPenaltyCostP1, StereoConfigHandler.trackbarCostAggregationP1))
StereoConfigHandler.trCostAggregationP2.append(StereoConfigHandler.Trackbar("Cost aggregation P2", stream, 0, 500, StereoConfigHandler.config.costAggregation.horizontalPenaltyCostP2, StereoConfigHandler.trackbarCostAggregationP2))
StereoConfigHandler.trTemporalAlpha.append(StereoConfigHandler.Trackbar("Temporal filter alpha", stream, 0, 100, int(StereoConfigHandler.config.postProcessing.temporalFilter.alpha*100), StereoConfigHandler.trackbarTemporalFilterAlpha))
StereoConfigHandler.trTemporalDelta.append(StereoConfigHandler.Trackbar("Temporal filter delta", stream, 0, 100, StereoConfigHandler.config.postProcessing.temporalFilter.delta, StereoConfigHandler.trackbarTemporalFilterDelta))
StereoConfigHandler.trSpatialAlpha.append(StereoConfigHandler.Trackbar("Spatial filter alpha", stream, 0, 100, int(StereoConfigHandler.config.postProcessing.spatialFilter.alpha*100), StereoConfigHandler.trackbarSpatialFilterAlpha))
StereoConfigHandler.trSpatialDelta.append(StereoConfigHandler.Trackbar("Spatial filter delta", stream, 0, 100, StereoConfigHandler.config.postProcessing.spatialFilter.delta, StereoConfigHandler.trackbarSpatialFilterDelta))
StereoConfigHandler.trSpatialHoleFilling.append(StereoConfigHandler.Trackbar("Spatial filter hole filling radius", stream, 0, 16, StereoConfigHandler.config.postProcessing.spatialFilter.holeFillingRadius, StereoConfigHandler.trackbarSpatialFilterHoleFillingRadius))
StereoConfigHandler.trSpatialNumIterations.append(StereoConfigHandler.Trackbar("Spatial filter number of iterations", stream, 0, 4, StereoConfigHandler.config.postProcessing.spatialFilter.numIterations, StereoConfigHandler.trackbarSpatialFilterNumIterations))
StereoConfigHandler.trThresholdMinRange.append(StereoConfigHandler.Trackbar("Threshold filter min range", stream, 0, 65, StereoConfigHandler.config.postProcessing.thresholdFilter.minRange, StereoConfigHandler.trackbarThresholdMinRange))
StereoConfigHandler.trThresholdMaxRange.append(StereoConfigHandler.Trackbar("Threshold filter max range", stream, 0, 65, StereoConfigHandler.config.postProcessing.thresholdFilter.maxRange, StereoConfigHandler.trackbarThresholdMaxRange))
StereoConfigHandler.trSpeckleRange.append(StereoConfigHandler.Trackbar("Speckle filter range", stream, 0, 240, StereoConfigHandler.config.postProcessing.speckleFilter.speckleRange, StereoConfigHandler.trackbarSpeckleRange))
StereoConfigHandler.trDecimationFactor.append(StereoConfigHandler.Trackbar("Decimation factor", stream, 1, 4, StereoConfigHandler.config.postProcessing.decimationFilter.decimationFactor, StereoConfigHandler.trackbarDecimationFactor))
def __init__(self, config):
print("Control median filter using the 'm' key.")
print("Control census transform kernel size using the 'c' key.")
print("Control disparity search range using the 'd' key.")
print("Control disparity companding using the 'f' key.")
print("Control census transform mean mode using the 'v' key.")
print("Control depth alignment using the 'a' key.")
print("Control decimation algorithm using the 'a' key.")
print("Control temporal persistency mode using the 'r' key.")
print("Control spatial filter using the 'w' key.")
print("Control temporal filter using the 't' key.")
print("Control speckle filter using the 's' key.")
print("Control left-right check mode using the '1' key.")
print("Control subpixel mode using the '2' key.")
print("Control extended mode using the '3' key.")
if evaluation_mode:
print("Switch between images using '[' and ']' keys.")
StereoConfigHandler.config = config
if StereoConfigHandler.config.censusTransform.kernelSize != dai.StereoDepthConfig.CensusTransform.KernelSize.AUTO:
censusMask = StereoConfigHandler.config.censusTransform.kernelMask
censusGridSize = [(5,5), (7,7), (7,9)]
censusGrid = censusGridSize[StereoConfigHandler.config.censusTransform.kernelSize]
if StereoConfigHandler.config.censusTransform.kernelMask == 0:
censusDefaultMask = [np.uint64(0xA82415), np.uint64(0xAA02A8154055), np.uint64(0x2AA00AA805540155)]
censusMask = censusDefaultMask[StereoConfigHandler.config.censusTransform.kernelSize]
StereoConfigHandler.censusMaskHandler = StereoConfigHandler.CensusMaskHandler("Census mask", censusGrid)
StereoConfigHandler.censusMaskHandler.setMask(censusMask)
else:
print("Census mask config is not available in AUTO Census kernel mode. Change using the 'c' key")
# StereoDepth initial config options.
outDepth = True # Disparity by default
outConfidenceMap = True # Output disparity confidence map
outRectified = True # Output and display rectified streams
lrcheck = True # Better handling for occlusions
extended = False # Closer-in minimum depth, disparity range is doubled. Unsupported for now.
subpixel = True # Better accuracy for longer distance, fractional disparity 32-levels
width = 1280
height = 800
xoutStereoCfg = None
# Create pipeline
pipeline = dai.Pipeline()
# Define sources and outputs
stereo = pipeline.create(dai.node.StereoDepth)
monoLeft = pipeline.create(dai.node.XLinkIn)
monoRight = pipeline.create(dai.node.XLinkIn)
xinStereoDepthConfig = pipeline.create(dai.node.XLinkIn)
xoutLeft = pipeline.create(dai.node.XLinkOut)
xoutRight = pipeline.create(dai.node.XLinkOut)
xoutDepth = pipeline.create(dai.node.XLinkOut)
xoutConfMap = pipeline.create(dai.node.XLinkOut)
xoutDisparity = pipeline.create(dai.node.XLinkOut)
xoutRectifLeft = pipeline.create(dai.node.XLinkOut)
xoutRectifRight = pipeline.create(dai.node.XLinkOut)
xoutStereoCfg = pipeline.create(dai.node.XLinkOut)
if args.debug:
xoutDebugLrCheckIt1 = pipeline.create(dai.node.XLinkOut)
xoutDebugLrCheckIt2 = pipeline.create(dai.node.XLinkOut)
xoutDebugExtLrCheckIt1 = pipeline.create(dai.node.XLinkOut)
xoutDebugExtLrCheckIt2 = pipeline.create(dai.node.XLinkOut)
if args.dumpdisparitycostvalues:
xoutDebugCostDump = pipeline.create(dai.node.XLinkOut)
xinStereoDepthConfig.setStreamName("stereoDepthConfig")
monoLeft.setStreamName("in_left")
monoRight.setStreamName("in_right")
xoutLeft.setStreamName("left")
xoutRight.setStreamName("right")
xoutDepth.setStreamName("depth")
xoutConfMap.setStreamName("confidence_map")
xoutDisparity.setStreamName("disparity")
xoutRectifLeft.setStreamName("rectified_left")
xoutRectifRight.setStreamName("rectified_right")
xoutStereoCfg.setStreamName("stereo_cfg")
if args.debug:
xoutDebugLrCheckIt1.setStreamName("disparity_lr_check_iteration1")
xoutDebugLrCheckIt2.setStreamName("disparity_lr_check_iteration2")
xoutDebugExtLrCheckIt1.setStreamName("disparity_ext_lr_check_iteration1")
xoutDebugExtLrCheckIt2.setStreamName("disparity_ext_lr_check_iteration2")
if args.dumpdisparitycostvalues:
xoutDebugCostDump.setStreamName("disparity_cost_dump")
# Properties
stereo.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
stereo.setRectifyEdgeFillColor(0) # Black, to better see the cutout
stereo.setLeftRightCheck(lrcheck)
stereo.setExtendedDisparity(extended)
stereo.setSubpixel(subpixel)
# Switching depthAlign mode at runtime is not supported while aligning to a specific camera is enabled
# stereo.setDepthAlign(dai.CameraBoardSocket.LEFT)
# allocates resources for worst case scenario
# allowing runtime switch of stereo modes
stereo.setRuntimeModeSwitch(True)
# Linking
if(args.swapLR):
monoLeft.out.link(stereo.right)
monoRight.out.link(stereo.left)
else:
monoLeft.out.link(stereo.left)
monoRight.out.link(stereo.right)
xinStereoDepthConfig.out.link(stereo.inputConfig)
stereo.syncedLeft.link(xoutLeft.input)
stereo.syncedRight.link(xoutRight.input)
if outDepth:
stereo.depth.link(xoutDepth.input)
if outConfidenceMap:
stereo.confidenceMap.link(xoutConfMap.input)
stereo.disparity.link(xoutDisparity.input)
if outRectified:
stereo.rectifiedLeft.link(xoutRectifLeft.input)
stereo.rectifiedRight.link(xoutRectifRight.input)
stereo.outConfig.link(xoutStereoCfg.input)
if args.debug:
stereo.debugDispLrCheckIt1.link(xoutDebugLrCheckIt1.input)
stereo.debugDispLrCheckIt2.link(xoutDebugLrCheckIt2.input)
stereo.debugExtDispLrCheckIt1.link(xoutDebugExtLrCheckIt1.input)
stereo.debugExtDispLrCheckIt2.link(xoutDebugExtLrCheckIt2.input)
if args.dumpdisparitycostvalues:
stereo.debugDispCostDump.link(xoutDebugCostDump.input)
StereoConfigHandler(stereo.initialConfig.get())
StereoConfigHandler.registerWindow("Stereo control panel")
# stereo.setPostProcessingHardwareResources(3, 3)
if(args.calibration):
calibrationHandler = dai.CalibrationHandler(args.calibration)
pipeline.setCalibrationData(calibrationHandler)
stereo.setInputResolution(width, height)
stereo.setRectification(args.rectify)
baseline = 75
fov = 71.86
focal = width / (2 * math.tan(fov / 2 / 180 * math.pi))
stereo.setBaseline(baseline/10)
stereo.setFocalLength(focal)
streams = ['left', 'right']
if outRectified:
streams.extend(["rectified_left", "rectified_right"])
streams.append("disparity")
if outDepth:
streams.append("depth")
if outConfidenceMap:
streams.append("confidence_map")
debugStreams = []
if args.debug:
debugStreams.extend(["disparity_lr_check_iteration1", "disparity_lr_check_iteration2"])
debugStreams.extend(["disparity_ext_lr_check_iteration1", "disparity_ext_lr_check_iteration2"])
if args.dumpdisparitycostvalues:
debugStreams.append("disparity_cost_dump")
def convertToCv2Frame(name, image, config):
maxDisp = config.getMaxDisparity()
subpixelLevels = pow(2, config.get().algorithmControl.subpixelFractionalBits)
subpixel = config.get().algorithmControl.enableSubpixel
dispIntegerLevels = maxDisp if not subpixel else maxDisp / subpixelLevels
frame = image.getFrame()
# frame.tofile(name+".raw")
if name == "depth":
dispScaleFactor = baseline * focal
with np.errstate(divide="ignore"):
frame = dispScaleFactor / frame
frame = (frame * 255. / dispIntegerLevels).astype(np.uint8)
frame = cv2.applyColorMap(frame, cv2.COLORMAP_HOT)
elif "confidence_map" in name:
pass
elif name == "disparity_cost_dump":
# frame.tofile(name+".raw")
pass
elif "disparity" in name:
if 1: # Optionally, extend disparity range to better visualize it
frame = (frame * 255. / maxDisp).astype(np.uint8)
return frame
# if 1: # Optionally, apply a color map
# frame = cv2.applyColorMap(frame, cv2.COLORMAP_HOT)
return frame
class DatasetManager:
def __init__(self, path):
self.path = path
self.index = 0
self.names = [d for d in os.listdir(path) if os.path.isdir(os.path.join(path, d))]
if len(self.names) == 0:
raise RuntimeError("No dataset found at {}".format(path))
def get(self):
return os.path.join(self.path, self.names[self.index])
def get_name(self):
return self.names[self.index]
def next(self):
self.index = (self.index + 1) % len(self.names)
return self.get()
def prev(self):
self.index = (self.index - 1) % len(self.names)
return self.get()
def read_pfm(file):
file = open(file, "rb")
color = None
width = None
height = None
scale = None
endian = None
header = file.readline().rstrip()
if header.decode("ascii") == "PF":
color = True
elif header.decode("ascii") == "Pf":
color = False
else:
raise Exception("Not a PFM file.")
dim_match = re.search(r"(\d+)\s(\d+)", file.readline().decode("ascii"))
if dim_match:
width, height = map(int, dim_match.groups())
else:
raise Exception("Malformed PFM header.")
scale = float(file.readline().rstrip())
if scale < 0: # little-endian
endian = "<"
scale = -scale
else:
endian = ">" # big-endian
data = np.fromfile(file, endian + "f")
shape = (height, width, 3) if color else (height, width)
return np.flip(np.reshape(data, shape), axis=0), scale
def calculate_err_measures(gt_img, oak_img):
assert gt_img.shape == oak_img.shape
gt_mask = gt_img != np.inf
oak_mask = oak_img != np.inf
mask = gt_mask & oak_mask
gt_img[~gt_mask] = 0.
oak_img[~mask] = 0.
err = np.abs(gt_img - oak_img)
n = np.sum(gt_mask)
invalid = np.sum(gt_mask & ~oak_mask)
bad05 = np.sum(mask & (err > 0.5))
bad1 = np.sum(mask & (err > 1.))
bad2 = np.sum(mask & (err > 2.))
bad4 = np.sum(mask & (err > 4.))
sum_err = np.sum(err[mask])
sum_sq_err = np.sum(err[mask] ** 2)
errs = err[mask]
bad05_p = 100. * bad05 / n
total_bad05_p = 100. * (bad05 + invalid) / n
bad1_p = 100. * bad1 / n
total_bad1_p = 100. * (bad1 + invalid) / n
bad2_p = 100. * bad2 / n
total_bad2_p = 100. * (bad2 + invalid) / n
bad4_p = 100. * bad4 / n
total_bad4_p = 100. * (bad4 + invalid) / n
invalid_p = 100. * invalid / n
avg_err = sum_err / (n - invalid)
mse = sum_sq_err / (n - invalid)
a50 = np.percentile(errs, 50)
a90 = np.percentile(errs, 90)
a95 = np.percentile(errs, 95)
a99 = np.percentile(errs, 99)
return {
"bad0.5": bad05_p,
"total_bad0.5": total_bad05_p,
"bad1": bad1_p,
"total_bad1": total_bad1_p,
"bad2": bad2_p,
"total_bad2": total_bad2_p,
"bad4": bad4_p,
"total_bad4": total_bad4_p,
"invalid": invalid_p,
"avg_err": avg_err,
"mse": mse,
"a50": a50,
"a90": a90,
"a95": a95,
"a99": a99
}
def show_evaluation(img_name, evals):
cv2.namedWindow("Evaluation", cv2.WINDOW_NORMAL)
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 2
thickness = 3
color = (0, 0, 0)
lines = [
f"Name: {img_name}",
f"Bad0.5: {evals['bad0.5']:.2f}%",
f"Total Bad0.5: {evals['total_bad0.5']:.2f}%",
f"Bad1: {evals['bad1']:.2f}%",
f"Total Bad1: {evals['total_bad1']:.2f}%",
f"Bad2: {evals['bad2']:.2f}%",
f"Total Bad2: {evals['total_bad2']:.2f}%",
f"Bad4: {evals['bad4']:.2f}%",
f"Total Bad4: {evals['total_bad4']:.2f}%",
f"Invalid: {evals['invalid']:.2f}%",
f"Avg Err: {evals['avg_err']:.2f}",
f"MSE: {evals['mse']:.2f}",
f"A50: {evals['a50']:.2f}",
f"A90: {evals['a90']:.2f}",
f"A95: {evals['a95']:.2f}",
f"A99: {evals['a99']:.2f}"
]
sizes = [cv2.getTextSize(line, font, font_scale, thickness) for line in lines]
sizes = [(size[0][0], size[0][1] + size[1], size[1]) for size in sizes]
max_width = max([size[0] for size in sizes])
total_height = sum([size[1] for size in sizes]) + (len(lines) - 1) * thickness
img = np.ones((total_height + thickness, max_width, 3), dtype=np.uint8) * 255
y = 0
for line, size in zip(lines, sizes):
cv2.putText(img, line, (0, y + size[1] - size[2]), font, font_scale, color, thickness)
y += size[1] + thickness
cv2.imshow("Evaluation", img)
def show_debug_disparity(gt_img, oak_img):
def rescale_img(img):
img[img == np.inf] = 0.
img = cv2.resize(img, (1280, 800), interpolation=cv2.INTER_AREA)
return img.astype(np.uint16)
gt_img = rescale_img(gt_img)
oak_img = rescale_img(oak_img)
maxv = max(gt_img.max(), oak_img.max())
gt_img = (gt_img * 255. / maxv).astype(np.uint8)
oak_img = (oak_img * 255. / maxv).astype(np.uint8)
cv2.imshow("GT", gt_img)
cv2.imshow("OAK", oak_img)
if evaluation_mode:
dataset = DatasetManager(args.evaluate)
print("Connecting and starting the pipeline")
# Connect to device and start pipeline
with dai.Device(pipeline) as device:
stereoDepthConfigInQueue = device.getInputQueue("stereoDepthConfig")
inStreams = ["in_left", "in_right"]
inStreamsCameraID = [dai.CameraBoardSocket.CAM_B, dai.CameraBoardSocket.CAM_C]
in_q_list = []
for s in inStreams:
q = device.getInputQueue(s)
in_q_list.append(q)
# Create a receive queue for each stream
q_list = []
for s in streams:
q = device.getOutputQueue(s, 8, blocking=False)
q_list.append(q)
inCfg = device.getOutputQueue("stereo_cfg", 8, blocking=False)
# Need to set a timestamp for input frames, for the sync stage in Stereo node
timestamp_ms = 0
index = 0
prevQueues = q_list.copy()
while True:
# Handle input streams, if any
if in_q_list:
dataset_size = 1 # Number of image pairs
frame_interval_ms = 50
for i, q in enumerate(in_q_list):
path = os.path.join(dataset.get(), f"im{i}.png") if evaluation_mode else args.dataset + "/" + str(index) + "/" + q.getName() + ".png"
data = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
data = cv2.resize(data, (width, height), interpolation = cv2.INTER_AREA)
data = data.reshape(height*width)
tstamp = datetime.timedelta(seconds = timestamp_ms // 1000,
milliseconds = timestamp_ms % 1000)
img = dai.ImgFrame()
img.setData(data)
img.setTimestamp(tstamp)
img.setInstanceNum(inStreamsCameraID[i])
img.setType(dai.ImgFrame.Type.RAW8)
img.setWidth(width)
img.setHeight(height)
q.send(img)
# print("Sent frame: {:25s}".format(path), "timestamp_ms:", timestamp_ms)
timestamp_ms += frame_interval_ms
index = (index + 1) % dataset_size
sleep(frame_interval_ms / 1000)
gt_disparity = None
if evaluation_mode:
# Load GT disparity
gt_disparity = read_pfm(os.path.join(dataset.get(), f"disp1.pfm"))[0]
# Handle output streams
currentConfig = inCfg.get()
lrCheckEnabled = currentConfig.get().algorithmControl.enableLeftRightCheck
extendedEnabled = currentConfig.get().algorithmControl.enableExtended
queues = q_list.copy()
if args.dumpdisparitycostvalues:
q = device.getOutputQueue("disparity_cost_dump", 8, blocking=False)
queues.append(q)
if args.debug:
q_list_debug = []
activeDebugStreams = []
if lrCheckEnabled:
activeDebugStreams.extend(["disparity_lr_check_iteration1", "disparity_lr_check_iteration2"])
if extendedEnabled:
activeDebugStreams.extend(["disparity_ext_lr_check_iteration1"])
if lrCheckEnabled:
activeDebugStreams.extend(["disparity_ext_lr_check_iteration2"])
for s in activeDebugStreams:
q = device.getOutputQueue(s, 8, blocking=False)
q_list_debug.append(q)
queues.extend(q_list_debug)
def ListDiff(li1, li2):
return list(set(li1) - set(li2)) + list(set(li2) - set(li1))
diff = ListDiff(prevQueues, queues)
for s in diff:
name = s.getName()
cv2.destroyWindow(name)
prevQueues = queues.copy()
disparity = None
for q in queues:
if q.getName() in ["left", "right"]: continue
data = q.get()
if q.getName() == "disparity":
disparity = data.getFrame()
frame = convertToCv2Frame(q.getName(), data, currentConfig)
cv2.imshow(q.getName(), frame)
if disparity is not None and gt_disparity is not None:
subpixel_bits = 1 << currentConfig.get().algorithmControl.subpixelFractionalBits
subpixel_enabled = currentConfig.get().algorithmControl.enableSubpixel
width_scale = float(gt_disparity.shape[1]) / float(disparity.shape[1])
disparity = disparity.astype(np.float32)
if subpixel_enabled:
disparity = disparity / subpixel_bits
disparity = disparity * width_scale
disparity = cv2.resize(disparity, (gt_disparity.shape[1], gt_disparity.shape[0]), interpolation = cv2.INTER_LINEAR)
disparity[disparity == 0.] = np.inf
# show_debug_disparity(gt_disparity, disparity)
err_vals = calculate_err_measures(gt_disparity, disparity)
show_evaluation(dataset.get_name(), err_vals)
key = cv2.waitKey(1)
if key == ord("q"):
break
elif evaluation_mode and key == ord("["):
dataset.next()
elif evaluation_mode and key == ord("]"):
dataset.prev()
StereoConfigHandler.handleKeypress(key, stereoDepthConfigInQueue)
|