Frame Normalization

This example shows how you can normalize a frame before sending it to another neural network. Many neural network models require frames with RGB values (pixels) in range between -0.5 to 0.5. ColorCamera’s preview outputs values between 0 and 255. Simple custom model, created with PyTorch (link here, tutorial here), allows users to specify mean and scale factors that will be applied to all frame values (pixels).

\[output = (input - mean) / scale\]
../../_images/normalize_model.png

On the host, values are converted back to 0-255, so they can be displayed by OpenCV.

Note

This is just a demo, for normalization you should use OpenVINO’s model optimizer arguments --mean_values and --scale_values.

Setup

Please run the install script to download all required dependencies. Please note that this script must be ran from git context, so you have to download the depthai-python repository first and then run the script

git clone https://github.com/luxonis/depthai-python.git
cd depthai-python/examples
python3 install_requirements.py

For additional information, please follow installation guide

Source code

Also available on GitHub

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#!/usr/bin/env python3

from pathlib import Path
import sys
import numpy as np
import cv2
import depthai as dai
SHAPE = 300

# Get argument first
nnPath = str((Path(__file__).parent / Path('../models/normalize_openvino_2021.4_4shave.blob')).resolve().absolute())
if len(sys.argv) > 1:
    nnPath = sys.argv[1]

if not Path(nnPath).exists():
    import sys
    raise FileNotFoundError(f'Required file/s not found, please run "{sys.executable} install_requirements.py"')

p = dai.Pipeline()
p.setOpenVINOVersion(dai.OpenVINO.VERSION_2021_4)

camRgb = p.createColorCamera()
# Model expects values in FP16, as we have compiled it with `-ip FP16`
camRgb.setFp16(True)
camRgb.setInterleaved(False)
camRgb.setPreviewSize(SHAPE, SHAPE)

nn = p.createNeuralNetwork()
nn.setBlobPath(nnPath)
nn.setNumInferenceThreads(2)

script = p.create(dai.node.Script)
script.setScript("""
# Run script only once. We could also send these values from host.
# Model formula:
# output = (input - mean) / scale

# This configuration will subtract all frame values (pixels) by 127.5
# 0.0 .. 255.0 -> -127.5 .. 127.5
data = NNData(2)
data.setLayer("mean", [127.5])
node.io['mean'].send(data)

# This configuration will divide all frame values (pixels) by 255.0
# -127.5 .. 127.5 -> -0.5 .. 0.5
data = NNData(2)
data.setLayer("scale", [255.0])
node.io['scale'].send(data)
""")

# Re-use the initial values for multiplier/addend
script.outputs['mean'].link(nn.inputs['mean'])
nn.inputs['mean'].setWaitForMessage(False)

script.outputs['scale'].link(nn.inputs['scale'])
nn.inputs['scale'].setWaitForMessage(False)
# Always wait for the new frame before starting inference
camRgb.preview.link(nn.inputs['frame'])

# Send normalized frame values to host
nn_xout = p.createXLinkOut()
nn_xout.setStreamName("nn")
nn.out.link(nn_xout.input)

# Pipeline is defined, now we can connect to the device
with dai.Device(p) as device:
    qNn = device.getOutputQueue(name="nn", maxSize=4, blocking=False)
    shape = (3, SHAPE, SHAPE)
    while True:
        inNn = np.array(qNn.get().getData())
        # Get back the frame. It's currently normalized to -0.5 - 0.5
        frame = inNn.view(np.float16).reshape(shape).transpose(1, 2, 0)
        # To get original frame back (0-255), we add multiply all frame values (pixels) by 255 and then add 127.5 to them
        frame = (frame * 255.0 + 127.5).astype(np.uint8)
        # Show the initial frame
        cv2.imshow("Original frame", frame)

        if cv2.waitKey(1) == ord('q'):
            break

Also available on GitHub

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#include <chrono>
#include <cstdio>
#include <iostream>

// Inludes common necessary includes for development using depthai library
#include "depthai/depthai.hpp"
#include "utility.hpp"

int main(int argc, char** argv) {
    using namespace std;
    // Default blob path provided by Hunter private data download
    // Applicable for easier example usage only
    std::string nnPath(BLOB_PATH);

    // If path to blob specified, use that
    if(argc > 1) {
        nnPath = std::string(argv[1]);
    }

    // Print which blob we are using
    printf("Using blob at path: %s\n", nnPath.c_str());

    // Create pipeline
    dai::Pipeline pipeline;
    pipeline.setOpenVINOVersion(dai::OpenVINO::Version::VERSION_2021_4);

    // Define sources and outputs
    auto camRgb = pipeline.create<dai::node::ColorCamera>();
    // Model expects values in FP16, as we have compiled it with `-ip FP16`
    camRgb->setFp16(true);
    camRgb->setInterleaved(false);
    camRgb->setPreviewSize(300, 300);  // NN input

    auto nn = pipeline.create<dai::node::NeuralNetwork>();
    nn->setBlobPath(nnPath);
    nn->setNumInferenceThreads(2);

    auto script = pipeline.create<dai::node::Script>();
    script->setScript(R"(
    # Run script only once
    # Model formula:
    # output = (input - mean) / scale

    # This configuration will subtract all frame values (pixels) by 127.5
    # 0.0 .. 255.0 -> -127.5 .. 127.5
    data = NNData(2)
    data.setLayer("mean", [127.5])
    node.io['mean'].send(data)

    # This configuration will divide all frame values (pixels) by 255.0
    # -127.5 .. 127.5 -> -0.5 .. 0.5
    data = NNData(2)
    data.setLayer("scale", [255.0])
    node.io['scale'].send(data)
    )");
    // Re-use the initial values for mean/scale
    script->outputs["mean"].link(nn->inputs["mean"]);
    nn->inputs["mean"].setWaitForMessage(false);

    script->outputs["scale"].link(nn->inputs["scale"]);
    nn->inputs["scale"].setWaitForMessage(false);
    // Always wait for the new frame before starting inference
    camRgb->preview.link(nn->inputs["frame"]);

    auto xout = pipeline.create<dai::node::XLinkOut>();
    xout->setStreamName("nn");
    nn->out.link(xout->input);

    // Connect to device and start pipeline
    dai::Device device(pipeline);

    // Output queues will be used to get the rgb frames and nn data from the outputs defined above
    auto qNn = device.getOutputQueue("nn", 4, false);

    while(true) {
        auto inNn = qNn->get<dai::NNData>();
        // To get original frame back (0-255), we add multiply all frame values (pixels) by 255 and then add 127.5 to them.
        cv::imshow("Original Frame", fromPlanarFp16(inNn->getFirstLayerFp16(), 300, 300, 127.5, 255.0));

        int key = cv::waitKey(1);
        if(key == 'q' || key == 'Q') {
            return 0;
        }
    }
    return 0;
}

Got questions?

Head over to Discussion Forum for technical support or any other questions you might have.