RGB Encoding & MobilenetSSD¶
This example shows how to configure the depthai video encoder in h.265 format to encode the RGB camera input at Full-HD resolution at 30FPS, and transfers the encoded video over XLINK to the host, saving it to disk as a video file. In the same time, a MobileNetv2SSD network is ran on the frames from the same RGB camera that is used for encoding
Pressing Ctrl+C will stop the recording and then convert it using ffmpeg into an mp4 to make it playable. Note that ffmpeg will need to be installed and runnable for the conversion to mp4 to succeed.
Be careful, this example saves encoded video to your host storage. So if you leave it running, you could fill up your storage on your host.
It’s a combination of RGB Encoding and RGB & MobilenetSSD.
Similar samples:
Demo¶
Setup¶
Please run the install script to download all required dependencies. Please note that this script must be ran from git context, so you have to download the depthai-python repository first and then run the script
git clone https://github.com/luxonis/depthai-python.git
cd depthai-python/examples
python3 install_requirements.py
For additional information, please follow installation guide
This example script requires external file(s) to run. If you are using:
depthai-python, run
python3 examples/install_requirements.py
to download required file(s)dephtai-core, required file(s) will get downloaded automatically when building the example
Source code¶
Also available on GitHub
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 | #!/usr/bin/env python3
from pathlib import Path
import sys
import cv2
import depthai as dai
import numpy as np
# Get argument first
nnPath = str((Path(__file__).parent / Path('../models/mobilenet-ssd_openvino_2021.4_6shave.blob')).resolve().absolute())
if len(sys.argv) > 1:
nnPath = sys.argv[1]
if not Path(nnPath).exists():
import sys
raise FileNotFoundError(f'Required file/s not found, please run "{sys.executable} install_requirements.py"')
# MobilenetSSD label texts
labelMap = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow",
"diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
# Create pipeline
pipeline = dai.Pipeline()
# Define sources and outputs
camRgb = pipeline.create(dai.node.ColorCamera)
videoEncoder = pipeline.create(dai.node.VideoEncoder)
nn = pipeline.create(dai.node.MobileNetDetectionNetwork)
xoutRgb = pipeline.create(dai.node.XLinkOut)
videoOut = pipeline.create(dai.node.XLinkOut)
nnOut = pipeline.create(dai.node.XLinkOut)
xoutRgb.setStreamName("rgb")
videoOut.setStreamName("h265")
nnOut.setStreamName("nn")
# Properties
camRgb.setBoardSocket(dai.CameraBoardSocket.CAM_A)
camRgb.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
camRgb.setPreviewSize(300, 300)
camRgb.setInterleaved(False)
videoEncoder.setDefaultProfilePreset(30, dai.VideoEncoderProperties.Profile.H265_MAIN)
nn.setConfidenceThreshold(0.5)
nn.setBlobPath(nnPath)
nn.setNumInferenceThreads(2)
nn.input.setBlocking(False)
# Linking
camRgb.video.link(videoEncoder.input)
camRgb.preview.link(xoutRgb.input)
camRgb.preview.link(nn.input)
videoEncoder.bitstream.link(videoOut.input)
nn.out.link(nnOut.input)
# Connect to device and start pipeline
with dai.Device(pipeline) as device, open('video.h265', 'wb') as videoFile:
# Queues
queue_size = 8
qRgb = device.getOutputQueue("rgb", queue_size)
qDet = device.getOutputQueue("nn", queue_size)
qRgbEnc = device.getOutputQueue('h265', maxSize=30, blocking=True)
frame = None
detections = []
def frameNorm(frame, bbox):
normVals = np.full(len(bbox), frame.shape[0])
normVals[::2] = frame.shape[1]
return (np.clip(np.array(bbox), 0, 1) * normVals).astype(int)
def displayFrame(name, frame):
color = (255, 0, 0)
for detection in detections:
bbox = frameNorm(frame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax))
cv2.putText(frame, labelMap[detection.label], (bbox[0] + 10, bbox[1] + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)
cv2.putText(frame, f"{int(detection.confidence * 100)}%", (bbox[0] + 10, bbox[1] + 40), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)
cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color, 2)
# Show the frame
cv2.imshow(name, frame)
while True:
inRgb = qRgb.tryGet()
inDet = qDet.tryGet()
while qRgbEnc.has():
qRgbEnc.get().getData().tofile(videoFile)
if inRgb is not None:
frame = inRgb.getCvFrame()
if inDet is not None:
detections = inDet.detections
if frame is not None:
displayFrame("rgb", frame)
if cv2.waitKey(1) == ord('q'):
break
print("To view the encoded data, convert the stream file (.h265) into a video file (.mp4), using a command below:")
print("ffmpeg -framerate 30 -i video.h265 -c copy video.mp4")
|
Also available on GitHub
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 | #include <iostream>
// Includes common necessary includes for development using depthai library
#include "depthai/depthai.hpp"
// MobilenetSSD label texts
static const std::vector<std::string> labelMap = {"background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus",
"car", "cat", "chair", "cow", "diningtable", "dog", "horse",
"motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
int main(int argc, char** argv) {
using namespace std;
// Default blob path provided by Hunter private data download
// Applicable for easier example usage only
std::string nnPath(BLOB_PATH);
// If path to blob specified, use that
if(argc > 1) {
nnPath = std::string(argv[1]);
}
// Print which blob we are using
printf("Using blob at path: %s\n", nnPath.c_str());
// Create pipeline
dai::Pipeline pipeline;
// Define sources and outputs
auto camRgb = pipeline.create<dai::node::ColorCamera>();
auto videoEncoder = pipeline.create<dai::node::VideoEncoder>();
auto nn = pipeline.create<dai::node::MobileNetDetectionNetwork>();
auto xoutRgb = pipeline.create<dai::node::XLinkOut>();
auto videoOut = pipeline.create<dai::node::XLinkOut>();
auto nnOut = pipeline.create<dai::node::XLinkOut>();
xoutRgb->setStreamName("rgb");
videoOut->setStreamName("h265");
nnOut->setStreamName("nn");
// Properties
camRgb->setBoardSocket(dai::CameraBoardSocket::CAM_A);
camRgb->setResolution(dai::ColorCameraProperties::SensorResolution::THE_1080_P);
camRgb->setPreviewSize(300, 300);
camRgb->setInterleaved(false);
videoEncoder->setDefaultProfilePreset(30, dai::VideoEncoderProperties::Profile::H265_MAIN);
nn->setConfidenceThreshold(0.5);
nn->setBlobPath(nnPath);
nn->setNumInferenceThreads(2);
nn->input.setBlocking(false);
// Linking
camRgb->video.link(videoEncoder->input);
camRgb->preview.link(xoutRgb->input);
camRgb->preview.link(nn->input);
videoEncoder->bitstream.link(videoOut->input);
nn->out.link(nnOut->input);
// Connect to device and start pipeline
dai::Device device(pipeline);
// Queues
int queueSize = 8;
auto qRgb = device.getOutputQueue("rgb", queueSize);
auto qDet = device.getOutputQueue("nn", queueSize);
auto qRgbEnc = device.getOutputQueue("h265", 30, true);
cv::Mat frame;
std::vector<dai::ImgDetection> detections;
// Add bounding boxes and text to the frame and show it to the user
auto displayFrame = [](std::string name, cv::Mat frame, std::vector<dai::ImgDetection>& detections) {
auto color = cv::Scalar(255, 0, 0);
// nn data, being the bounding box locations, are in <0..1> range - they need to be normalized with frame width/height
for(auto& detection : detections) {
int x1 = detection.xmin * frame.cols;
int y1 = detection.ymin * frame.rows;
int x2 = detection.xmax * frame.cols;
int y2 = detection.ymax * frame.rows;
uint32_t labelIndex = detection.label;
std::string labelStr = to_string(labelIndex);
if(labelIndex < labelMap.size()) {
labelStr = labelMap[labelIndex];
}
cv::putText(frame, labelStr, cv::Point(x1 + 10, y1 + 20), cv::FONT_HERSHEY_TRIPLEX, 0.5, color);
std::stringstream confStr;
confStr << std::fixed << std::setprecision(2) << detection.confidence * 100;
cv::putText(frame, confStr.str(), cv::Point(x1 + 10, y1 + 40), cv::FONT_HERSHEY_TRIPLEX, 0.5, color);
cv::rectangle(frame, cv::Rect(cv::Point(x1, y1), cv::Point(x2, y2)), color, cv::FONT_HERSHEY_SIMPLEX);
}
// Show the frame
cv::imshow(name, frame);
};
auto videoFile = std::ofstream("video.h264", std::ios::binary);
while(true) {
auto inRgb = qRgb->tryGet<dai::ImgFrame>();
auto inDet = qDet->tryGet<dai::ImgDetections>();
auto out = qRgbEnc->get<dai::ImgFrame>();
videoFile.write((char*)out->getData().data(), out->getData().size());
if(inRgb) {
frame = inRgb->getCvFrame();
}
if(inDet) {
detections = inDet->detections;
}
if(!frame.empty()) {
displayFrame("rgb", frame, detections);
}
int key = cv::waitKey(1);
if(key == 'q' || key == 'Q') {
break;
}
}
cout << "To view the encoded data, convert the stream file (.h265) into a video file (.mp4), using a command below:" << endl;
cout << "ffmpeg -framerate 30 -i video.h264 -c copy video.mp4" << endl;
return 0;
}
|