Spatial object tracker on RGB¶

This example shows how to run MobileNetv2SSD on the RGB input frame, and perform spatial object tracking on persons.

setConfidenceThreshold - confidence threshold above which objects are detected

Similar samples:

Demo¶

Setup¶

Please run the install script to download all required dependencies. Please note that this script must be ran from git context, so you have to download the depthai-python repository first and then run the script

git clone https://github.com/luxonis/depthai-python.git
cd depthai-python/examples
python3 install_requirements.py

For additional information, please follow installation guide

This example script requires external file(s) to run. If you are using:

  • depthai-python, run python3 examples/install_requirements.py to download required file(s)

  • dephtai-core, required file(s) will get downloaded automatically when building the example

Source code¶

Also available on GitHub

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#!/usr/bin/env python3

from pathlib import Path
import cv2
import depthai as dai
import numpy as np
import time
import argparse

labelMap = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow",
            "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]

nnPathDefault = str((Path(__file__).parent / Path('../models/mobilenet-ssd_openvino_2021.4_5shave.blob')).resolve().absolute())
parser = argparse.ArgumentParser()
parser.add_argument('nnPath', nargs='?', help="Path to mobilenet detection network blob", default=nnPathDefault)
parser.add_argument('-ff', '--full_frame', action="store_true", help="Perform tracking on full RGB frame", default=False)

args = parser.parse_args()

fullFrameTracking = args.full_frame

# Create pipeline
pipeline = dai.Pipeline()

# Define sources and outputs
camRgb = pipeline.create(dai.node.ColorCamera)
spatialDetectionNetwork = pipeline.create(dai.node.MobileNetSpatialDetectionNetwork)
monoLeft = pipeline.create(dai.node.MonoCamera)
monoRight = pipeline.create(dai.node.MonoCamera)
stereo = pipeline.create(dai.node.StereoDepth)
objectTracker = pipeline.create(dai.node.ObjectTracker)

xoutRgb = pipeline.create(dai.node.XLinkOut)
trackerOut = pipeline.create(dai.node.XLinkOut)

xoutRgb.setStreamName("preview")
trackerOut.setStreamName("tracklets")

# Properties
camRgb.setPreviewSize(300, 300)
camRgb.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
camRgb.setInterleaved(False)
camRgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.BGR)

monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
monoLeft.setCamera("left")
monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
monoRight.setCamera("right")

# setting node configs
stereo.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
# Align depth map to the perspective of RGB camera, on which inference is done
stereo.setDepthAlign(dai.CameraBoardSocket.CAM_A)
stereo.setOutputSize(monoLeft.getResolutionWidth(), monoLeft.getResolutionHeight())

spatialDetectionNetwork.setBlobPath(args.nnPath)
spatialDetectionNetwork.setConfidenceThreshold(0.5)
spatialDetectionNetwork.input.setBlocking(False)
spatialDetectionNetwork.setBoundingBoxScaleFactor(0.5)
spatialDetectionNetwork.setDepthLowerThreshold(100)
spatialDetectionNetwork.setDepthUpperThreshold(5000)

objectTracker.setDetectionLabelsToTrack([15])  # track only person
# possible tracking types: ZERO_TERM_COLOR_HISTOGRAM, ZERO_TERM_IMAGELESS, SHORT_TERM_IMAGELESS, SHORT_TERM_KCF
objectTracker.setTrackerType(dai.TrackerType.ZERO_TERM_COLOR_HISTOGRAM)
# take the smallest ID when new object is tracked, possible options: SMALLEST_ID, UNIQUE_ID
objectTracker.setTrackerIdAssignmentPolicy(dai.TrackerIdAssignmentPolicy.SMALLEST_ID)

# Linking
monoLeft.out.link(stereo.left)
monoRight.out.link(stereo.right)

camRgb.preview.link(spatialDetectionNetwork.input)
objectTracker.passthroughTrackerFrame.link(xoutRgb.input)
objectTracker.out.link(trackerOut.input)

if fullFrameTracking:
    camRgb.setPreviewKeepAspectRatio(False)
    camRgb.video.link(objectTracker.inputTrackerFrame)
    objectTracker.inputTrackerFrame.setBlocking(False)
    # do not block the pipeline if it's too slow on full frame
    objectTracker.inputTrackerFrame.setQueueSize(2)
else:
    spatialDetectionNetwork.passthrough.link(objectTracker.inputTrackerFrame)

spatialDetectionNetwork.passthrough.link(objectTracker.inputDetectionFrame)
spatialDetectionNetwork.out.link(objectTracker.inputDetections)
stereo.depth.link(spatialDetectionNetwork.inputDepth)

# Connect to device and start pipeline
with dai.Device(pipeline) as device:

    preview = device.getOutputQueue("preview", 4, False)
    tracklets = device.getOutputQueue("tracklets", 4, False)

    startTime = time.monotonic()
    counter = 0
    fps = 0
    color = (255, 255, 255)

    while(True):
        imgFrame = preview.get()
        track = tracklets.get()

        counter+=1
        current_time = time.monotonic()
        if (current_time - startTime) > 1 :
            fps = counter / (current_time - startTime)
            counter = 0
            startTime = current_time

        frame = imgFrame.getCvFrame()
        trackletsData = track.tracklets
        for t in trackletsData:
            roi = t.roi.denormalize(frame.shape[1], frame.shape[0])
            x1 = int(roi.topLeft().x)
            y1 = int(roi.topLeft().y)
            x2 = int(roi.bottomRight().x)
            y2 = int(roi.bottomRight().y)

            try:
                label = labelMap[t.label]
            except:
                label = t.label

            cv2.putText(frame, str(label), (x1 + 10, y1 + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
            cv2.putText(frame, f"ID: {[t.id]}", (x1 + 10, y1 + 35), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
            cv2.putText(frame, t.status.name, (x1 + 10, y1 + 50), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
            cv2.rectangle(frame, (x1, y1), (x2, y2), color, cv2.FONT_HERSHEY_SIMPLEX)

            cv2.putText(frame, f"X: {int(t.spatialCoordinates.x)} mm", (x1 + 10, y1 + 65), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
            cv2.putText(frame, f"Y: {int(t.spatialCoordinates.y)} mm", (x1 + 10, y1 + 80), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
            cv2.putText(frame, f"Z: {int(t.spatialCoordinates.z)} mm", (x1 + 10, y1 + 95), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)

        cv2.putText(frame, "NN fps: {:.2f}".format(fps), (2, frame.shape[0] - 4), cv2.FONT_HERSHEY_TRIPLEX, 0.4, color)

        cv2.imshow("tracker", frame)

        if cv2.waitKey(1) == ord('q'):
            break

Also available on GitHub

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#include <chrono>

#include "utility.hpp"

// Includes common necessary includes for development using depthai library
#include "depthai/depthai.hpp"

static const std::vector<std::string> labelMap = {"background", "aeroplane", "bicycle",     "bird",  "boat",        "bottle", "bus",
                                                  "car",        "cat",       "chair",       "cow",   "diningtable", "dog",    "horse",
                                                  "motorbike",  "person",    "pottedplant", "sheep", "sofa",        "train",  "tvmonitor"};

static std::atomic<bool> fullFrameTracking{false};

int main(int argc, char** argv) {
    using namespace std;
    using namespace std::chrono;
    std::string nnPath(BLOB_PATH);

    // If path to blob specified, use that
    if(argc > 1) {
        nnPath = std::string(argv[1]);
    }

    // Print which blob we are using
    printf("Using blob at path: %s\n", nnPath.c_str());

    // Create pipeline
    dai::Pipeline pipeline;

    // Define sources and outputs
    auto camRgb = pipeline.create<dai::node::ColorCamera>();
    auto spatialDetectionNetwork = pipeline.create<dai::node::MobileNetSpatialDetectionNetwork>();
    auto monoLeft = pipeline.create<dai::node::MonoCamera>();
    auto monoRight = pipeline.create<dai::node::MonoCamera>();
    auto stereo = pipeline.create<dai::node::StereoDepth>();
    auto objectTracker = pipeline.create<dai::node::ObjectTracker>();

    auto xoutRgb = pipeline.create<dai::node::XLinkOut>();
    auto trackerOut = pipeline.create<dai::node::XLinkOut>();

    xoutRgb->setStreamName("preview");
    trackerOut->setStreamName("tracklets");

    // Properties
    camRgb->setPreviewSize(300, 300);
    camRgb->setResolution(dai::ColorCameraProperties::SensorResolution::THE_1080_P);
    camRgb->setInterleaved(false);
    camRgb->setColorOrder(dai::ColorCameraProperties::ColorOrder::BGR);

    monoLeft->setResolution(dai::MonoCameraProperties::SensorResolution::THE_400_P);
    monoLeft->setCamera("left");
    monoRight->setResolution(dai::MonoCameraProperties::SensorResolution::THE_400_P);
    monoRight->setCamera("right");

    // setting node configs
    stereo->setDefaultProfilePreset(dai::node::StereoDepth::PresetMode::HIGH_DENSITY);
    // Align depth map to the perspective of RGB camera, on which inference is done
    stereo->setDepthAlign(dai::CameraBoardSocket::CAM_A);
    stereo->setOutputSize(monoLeft->getResolutionWidth(), monoLeft->getResolutionHeight());

    spatialDetectionNetwork->setBlobPath(nnPath);
    spatialDetectionNetwork->setConfidenceThreshold(0.5f);
    spatialDetectionNetwork->input.setBlocking(false);
    spatialDetectionNetwork->setBoundingBoxScaleFactor(0.5);
    spatialDetectionNetwork->setDepthLowerThreshold(100);
    spatialDetectionNetwork->setDepthUpperThreshold(5000);

    objectTracker->setDetectionLabelsToTrack({15});  // track only person
    // possible tracking types: ZERO_TERM_COLOR_HISTOGRAM, ZERO_TERM_IMAGELESS, SHORT_TERM_IMAGELESS, SHORT_TERM_KCF
    objectTracker->setTrackerType(dai::TrackerType::ZERO_TERM_COLOR_HISTOGRAM);
    // take the smallest ID when new object is tracked, possible options: SMALLEST_ID, UNIQUE_ID
    objectTracker->setTrackerIdAssignmentPolicy(dai::TrackerIdAssignmentPolicy::SMALLEST_ID);

    // Linking
    monoLeft->out.link(stereo->left);
    monoRight->out.link(stereo->right);

    camRgb->preview.link(spatialDetectionNetwork->input);
    objectTracker->passthroughTrackerFrame.link(xoutRgb->input);
    objectTracker->out.link(trackerOut->input);

    if(fullFrameTracking) {
        camRgb->setPreviewKeepAspectRatio(false);
        camRgb->video.link(objectTracker->inputTrackerFrame);
        objectTracker->inputTrackerFrame.setBlocking(false);
        // do not block the pipeline if it's too slow on full frame
        objectTracker->inputTrackerFrame.setQueueSize(2);
    } else {
        spatialDetectionNetwork->passthrough.link(objectTracker->inputTrackerFrame);
    }

    spatialDetectionNetwork->passthrough.link(objectTracker->inputDetectionFrame);
    spatialDetectionNetwork->out.link(objectTracker->inputDetections);
    stereo->depth.link(spatialDetectionNetwork->inputDepth);

    // Connect to device and start pipeline
    dai::Device device(pipeline);

    auto preview = device.getOutputQueue("preview", 4, false);
    auto tracklets = device.getOutputQueue("tracklets", 4, false);

    auto startTime = steady_clock::now();
    int counter = 0;
    float fps = 0;
    auto color = cv::Scalar(255, 255, 255);

    while(true) {
        auto imgFrame = preview->get<dai::ImgFrame>();
        auto track = tracklets->get<dai::Tracklets>();

        counter++;
        auto currentTime = steady_clock::now();
        auto elapsed = duration_cast<duration<float>>(currentTime - startTime);
        if(elapsed > seconds(1)) {
            fps = counter / elapsed.count();
            counter = 0;
            startTime = currentTime;
        }

        cv::Mat frame = imgFrame->getCvFrame();
        auto trackletsData = track->tracklets;
        for(auto& t : trackletsData) {
            auto roi = t.roi.denormalize(frame.cols, frame.rows);
            int x1 = roi.topLeft().x;
            int y1 = roi.topLeft().y;
            int x2 = roi.bottomRight().x;
            int y2 = roi.bottomRight().y;

            uint32_t labelIndex = t.label;
            std::string labelStr = to_string(labelIndex);
            if(labelIndex < labelMap.size()) {
                labelStr = labelMap[labelIndex];
            }
            cv::putText(frame, labelStr, cv::Point(x1 + 10, y1 + 20), cv::FONT_HERSHEY_TRIPLEX, 0.5, 255);

            std::stringstream idStr;
            idStr << "ID: " << t.id;
            cv::putText(frame, idStr.str(), cv::Point(x1 + 10, y1 + 35), cv::FONT_HERSHEY_TRIPLEX, 0.5, 255);
            std::stringstream statusStr;
            statusStr << "Status: " << t.status;
            cv::putText(frame, statusStr.str(), cv::Point(x1 + 10, y1 + 50), cv::FONT_HERSHEY_TRIPLEX, 0.5, 255);

            std::stringstream depthX;
            depthX << "X: " << (int)t.spatialCoordinates.x << " mm";
            cv::putText(frame, depthX.str(), cv::Point(x1 + 10, y1 + 65), cv::FONT_HERSHEY_TRIPLEX, 0.5, 255);
            std::stringstream depthY;
            depthY << "Y: " << (int)t.spatialCoordinates.y << " mm";
            cv::putText(frame, depthY.str(), cv::Point(x1 + 10, y1 + 80), cv::FONT_HERSHEY_TRIPLEX, 0.5, 255);
            std::stringstream depthZ;
            depthZ << "Z: " << (int)t.spatialCoordinates.z << " mm";
            cv::putText(frame, depthZ.str(), cv::Point(x1 + 10, y1 + 95), cv::FONT_HERSHEY_TRIPLEX, 0.5, 255);

            cv::rectangle(frame, cv::Rect(cv::Point(x1, y1), cv::Point(x2, y2)), color, cv::FONT_HERSHEY_SIMPLEX);
        }

        std::stringstream fpsStr;
        fpsStr << "NN fps: " << std::fixed << std::setprecision(2) << fps;
        cv::putText(frame, fpsStr.str(), cv::Point(2, imgFrame->getHeight() - 4), cv::FONT_HERSHEY_TRIPLEX, 0.4, color);

        cv::imshow("tracker", frame);

        int key = cv::waitKey(1);
        if(key == 'q') {
            return 0;
        }
    }
    return 0;
}

Got questions?

Head over to Discussion Forum for technical support or any other questions you might have.