Mono & MobilenetSSD with spatial data¶
This example shows how to run MobileNetv2SSD on the rectified right input frame, and how to display both the preview, detections, depth map and spatial information (X,Y,Z). It’s similar to example RGB & MobilenetSSD except it has spatial data. X,Y,Z coordinates are relative to the center of depth map.
setConfidenceThreshold - confidence threshold above which objects are detected
Similar samples:
Demo¶
Setup¶
Please run the install script to download all required dependencies. Please note that this script must be ran from git context, so you have to download the depthai-python repository first and then run the script
git clone https://github.com/luxonis/depthai-python.git
cd depthai-python/examples
python3 install_requirements.py
For additional information, please follow installation guide
This example script requires external file(s) to run. If you are using:
depthai-python, run
python3 examples/install_requirements.py
to download required file(s)dephtai-core, required file(s) will get downloaded automatically when building the example
Source code¶
Also available on GitHub
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 | #!/usr/bin/env python3
from pathlib import Path
import sys
import cv2
import depthai as dai
import numpy as np
import time
'''
Mobilenet SSD device side decoding demo
The "mobilenet-ssd" model is a Single-Shot multibox Detection (SSD) network intended
to perform object detection. This model is implemented using the Caffe* framework.
For details about this model, check out the repository <https://github.com/chuanqi305/MobileNet-SSD>.
'''
# Get argument first
nnPath = str((Path(__file__).parent / Path('../models/mobilenet-ssd_openvino_2021.4_6shave.blob')).resolve().absolute())
if len(sys.argv) > 1:
nnPath = sys.argv[1]
if not Path(nnPath).exists():
import sys
raise FileNotFoundError(f'Required file/s not found, please run "{sys.executable} install_requirements.py"')
# MobilenetSSD label texts
labelMap = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow",
"diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
syncNN = True
# Create pipeline
pipeline = dai.Pipeline()
# Define sources and outputs
monoLeft = pipeline.create(dai.node.MonoCamera)
monoRight = pipeline.create(dai.node.MonoCamera)
stereo = pipeline.create(dai.node.StereoDepth)
spatialDetectionNetwork = pipeline.create(dai.node.MobileNetSpatialDetectionNetwork)
imageManip = pipeline.create(dai.node.ImageManip)
xoutManip = pipeline.create(dai.node.XLinkOut)
nnOut = pipeline.create(dai.node.XLinkOut)
xoutDepth = pipeline.create(dai.node.XLinkOut)
xoutManip.setStreamName("right")
nnOut.setStreamName("detections")
xoutDepth.setStreamName("depth")
# Properties
imageManip.initialConfig.setResize(300, 300)
# The NN model expects BGR input. By default ImageManip output type would be same as input (gray in this case)
imageManip.initialConfig.setFrameType(dai.ImgFrame.Type.BGR888p)
monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
monoLeft.setCamera("left")
monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
monoRight.setCamera("right")
# StereoDepth
stereo.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
stereo.setSubpixel(True)
# Define a neural network that will make predictions based on the source frames
spatialDetectionNetwork.setConfidenceThreshold(0.5)
spatialDetectionNetwork.setBlobPath(nnPath)
spatialDetectionNetwork.input.setBlocking(False)
spatialDetectionNetwork.setBoundingBoxScaleFactor(0.5)
spatialDetectionNetwork.setDepthLowerThreshold(100)
spatialDetectionNetwork.setDepthUpperThreshold(5000)
# Linking
monoLeft.out.link(stereo.left)
monoRight.out.link(stereo.right)
imageManip.out.link(spatialDetectionNetwork.input)
if syncNN:
spatialDetectionNetwork.passthrough.link(xoutManip.input)
else:
imageManip.out.link(xoutManip.input)
spatialDetectionNetwork.out.link(nnOut.input)
stereo.rectifiedRight.link(imageManip.inputImage)
stereo.depth.link(spatialDetectionNetwork.inputDepth)
spatialDetectionNetwork.passthroughDepth.link(xoutDepth.input)
# Connect to device and start pipeline
with dai.Device(pipeline) as device:
# Output queues will be used to get the rgb frames and nn data from the outputs defined above
previewQueue = device.getOutputQueue(name="right", maxSize=4, blocking=False)
detectionNNQueue = device.getOutputQueue(name="detections", maxSize=4, blocking=False)
depthQueue = device.getOutputQueue(name="depth", maxSize=4, blocking=False)
rectifiedRight = None
detections = []
startTime = time.monotonic()
counter = 0
fps = 0
color = (255, 255, 255)
while True:
inRectified = previewQueue.get()
inDet = detectionNNQueue.get()
inDepth = depthQueue.get()
counter += 1
currentTime = time.monotonic()
if (currentTime - startTime) > 1:
fps = counter / (currentTime - startTime)
counter = 0
startTime = currentTime
rectifiedRight = inRectified.getCvFrame()
depthFrame = inDepth.getFrame() # depthFrame values are in millimeters
depth_downscaled = depthFrame[::4]
if np.all(depth_downscaled == 0):
min_depth = 0 # Set a default minimum depth value when all elements are zero
else:
min_depth = np.percentile(depth_downscaled[depth_downscaled != 0], 1)
max_depth = np.percentile(depth_downscaled, 99)
depthFrameColor = np.interp(depthFrame, (min_depth, max_depth), (0, 255)).astype(np.uint8)
depthFrameColor = cv2.applyColorMap(depthFrameColor, cv2.COLORMAP_HOT)
detections = inDet.detections
# If the rectifiedRight is available, draw bounding boxes on it and show the rectifiedRight
height = rectifiedRight.shape[0]
width = rectifiedRight.shape[1]
for detection in detections:
roiData = detection.boundingBoxMapping
roi = roiData.roi
roi = roi.denormalize(depthFrameColor.shape[1], depthFrameColor.shape[0])
topLeft = roi.topLeft()
bottomRight = roi.bottomRight()
xmin = int(topLeft.x)
ymin = int(topLeft.y)
xmax = int(bottomRight.x)
ymax = int(bottomRight.y)
cv2.rectangle(depthFrameColor, (xmin, ymin), (xmax, ymax), color, cv2.FONT_HERSHEY_SCRIPT_SIMPLEX)
# Denormalize bounding box
x1 = int(detection.xmin * width)
x2 = int(detection.xmax * width)
y1 = int(detection.ymin * height)
y2 = int(detection.ymax * height)
try:
label = labelMap[detection.label]
except:
label = detection.label
cv2.putText(rectifiedRight, str(label), (x1 + 10, y1 + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
cv2.putText(rectifiedRight, "{:.2f}".format(detection.confidence*100), (x1 + 10, y1 + 35), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
cv2.putText(rectifiedRight, f"X: {int(detection.spatialCoordinates.x)} mm", (x1 + 10, y1 + 50), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
cv2.putText(rectifiedRight, f"Y: {int(detection.spatialCoordinates.y)} mm", (x1 + 10, y1 + 65), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
cv2.putText(rectifiedRight, f"Z: {int(detection.spatialCoordinates.z)} mm", (x1 + 10, y1 + 80), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
cv2.rectangle(rectifiedRight, (x1, y1), (x2, y2), color, cv2.FONT_HERSHEY_SIMPLEX)
cv2.putText(rectifiedRight, "NN fps: {:.2f}".format(fps), (2, rectifiedRight.shape[0] - 4), cv2.FONT_HERSHEY_TRIPLEX, 0.4, color)
cv2.imshow("depth", depthFrameColor)
cv2.imshow("rectified right", rectifiedRight)
if cv2.waitKey(1) == ord('q'):
break
|
Also available on GitHub
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 | #include <chrono>
#include <iostream>
// Includes common necessary includes for development using depthai library
#include "depthai/depthai.hpp"
static const std::vector<std::string> labelMap = {"background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus",
"car", "cat", "chair", "cow", "diningtable", "dog", "horse",
"motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
static std::atomic<bool> syncNN{true};
int main(int argc, char** argv) {
using namespace std;
using namespace std::chrono;
std::string nnPath(BLOB_PATH);
// If path to blob specified, use that
if(argc > 1) {
nnPath = std::string(argv[1]);
}
// Print which blob we are using
printf("Using blob at path: %s\n", nnPath.c_str());
// Create pipeline
dai::Pipeline pipeline;
// Define sources and outputs
auto monoLeft = pipeline.create<dai::node::MonoCamera>();
auto monoRight = pipeline.create<dai::node::MonoCamera>();
auto stereo = pipeline.create<dai::node::StereoDepth>();
auto spatialDetectionNetwork = pipeline.create<dai::node::MobileNetSpatialDetectionNetwork>();
auto imageManip = pipeline.create<dai::node::ImageManip>();
auto xoutManip = pipeline.create<dai::node::XLinkOut>();
auto nnOut = pipeline.create<dai::node::XLinkOut>();
auto xoutDepth = pipeline.create<dai::node::XLinkOut>();
xoutManip->setStreamName("right");
nnOut->setStreamName("detections");
xoutDepth->setStreamName("depth");
// Properties
imageManip->initialConfig.setResize(300, 300);
// The NN model expects BGR input. By default ImageManip output type would be same as input (gray in this case)
imageManip->initialConfig.setFrameType(dai::ImgFrame::Type::BGR888p);
monoLeft->setResolution(dai::MonoCameraProperties::SensorResolution::THE_400_P);
monoLeft->setCamera("left");
monoRight->setResolution(dai::MonoCameraProperties::SensorResolution::THE_400_P);
monoRight->setCamera("right");
// StereoDepth
stereo->setDefaultProfilePreset(dai::node::StereoDepth::PresetMode::HIGH_DENSITY);
// Define a neural network that will make predictions based on the source frames
spatialDetectionNetwork->setConfidenceThreshold(0.5f);
spatialDetectionNetwork->setBlobPath(nnPath);
spatialDetectionNetwork->input.setBlocking(false);
spatialDetectionNetwork->setBoundingBoxScaleFactor(0.5);
spatialDetectionNetwork->setDepthLowerThreshold(100);
spatialDetectionNetwork->setDepthUpperThreshold(5000);
// Linking
monoLeft->out.link(stereo->left);
monoRight->out.link(stereo->right);
imageManip->out.link(spatialDetectionNetwork->input);
if(syncNN) {
spatialDetectionNetwork->passthrough.link(xoutManip->input);
} else {
imageManip->out.link(xoutManip->input);
}
spatialDetectionNetwork->out.link(nnOut->input);
stereo->rectifiedRight.link(imageManip->inputImage);
stereo->depth.link(spatialDetectionNetwork->inputDepth);
spatialDetectionNetwork->passthroughDepth.link(xoutDepth->input);
// Connect to device and start pipeline
dai::Device device(pipeline);
// Output queues will be used to get the rgb frames and nn data from the outputs defined above
auto previewQueue = device.getOutputQueue("right", 4, false);
auto detectionNNQueue = device.getOutputQueue("detections", 4, false);
auto depthQueue = device.getOutputQueue("depth", 4, false);
auto startTime = steady_clock::now();
int counter = 0;
float fps = 0;
auto color = cv::Scalar(255, 255, 255);
while(true) {
auto inRectified = previewQueue->get<dai::ImgFrame>();
auto inDet = detectionNNQueue->get<dai::SpatialImgDetections>();
auto inDepth = depthQueue->get<dai::ImgFrame>();
counter++;
auto currentTime = steady_clock::now();
auto elapsed = duration_cast<duration<float>>(currentTime - startTime);
if(elapsed > seconds(1)) {
fps = counter / elapsed.count();
counter = 0;
startTime = currentTime;
}
cv::Mat rectifiedRight = inRectified->getCvFrame();
cv::Mat depthFrame = inDepth->getFrame(); // depthFrame values are in millimeters
cv::Mat depthFrameColor;
cv::normalize(depthFrame, depthFrameColor, 255, 0, cv::NORM_INF, CV_8UC1);
cv::equalizeHist(depthFrameColor, depthFrameColor);
cv::applyColorMap(depthFrameColor, depthFrameColor, cv::COLORMAP_HOT);
auto detections = inDet->detections;
for(auto& detection : detections) {
auto roiData = detection.boundingBoxMapping;
auto roi = roiData.roi;
roi = roi.denormalize(depthFrameColor.cols, depthFrameColor.rows);
auto topLeft = roi.topLeft();
auto bottomRight = roi.bottomRight();
auto xmin = (int)topLeft.x;
auto ymin = (int)topLeft.y;
auto xmax = (int)bottomRight.x;
auto ymax = (int)bottomRight.y;
cv::rectangle(depthFrameColor, cv::Rect(cv::Point(xmin, ymin), cv::Point(xmax, ymax)), color, cv::FONT_HERSHEY_SIMPLEX);
int x1 = detection.xmin * rectifiedRight.cols;
int y1 = detection.ymin * rectifiedRight.rows;
int x2 = detection.xmax * rectifiedRight.cols;
int y2 = detection.ymax * rectifiedRight.rows;
uint32_t labelIndex = detection.label;
std::string labelStr = to_string(labelIndex);
if(labelIndex < labelMap.size()) {
labelStr = labelMap[labelIndex];
}
cv::putText(rectifiedRight, labelStr, cv::Point(x1 + 10, y1 + 20), cv::FONT_HERSHEY_TRIPLEX, 0.5, 255);
std::stringstream confStr;
confStr << std::fixed << std::setprecision(2) << detection.confidence * 100;
cv::putText(rectifiedRight, confStr.str(), cv::Point(x1 + 10, y1 + 35), cv::FONT_HERSHEY_TRIPLEX, 0.5, 255);
std::stringstream depthX;
depthX << "X: " << (int)detection.spatialCoordinates.x << " mm";
cv::putText(rectifiedRight, depthX.str(), cv::Point(x1 + 10, y1 + 50), cv::FONT_HERSHEY_TRIPLEX, 0.5, 255);
std::stringstream depthY;
depthY << "Y: " << (int)detection.spatialCoordinates.y << " mm";
cv::putText(rectifiedRight, depthY.str(), cv::Point(x1 + 10, y1 + 65), cv::FONT_HERSHEY_TRIPLEX, 0.5, 255);
std::stringstream depthZ;
depthZ << "Z: " << (int)detection.spatialCoordinates.z << " mm";
cv::putText(rectifiedRight, depthZ.str(), cv::Point(x1 + 10, y1 + 80), cv::FONT_HERSHEY_TRIPLEX, 0.5, 255);
cv::rectangle(rectifiedRight, cv::Rect(cv::Point(x1, y1), cv::Point(x2, y2)), color, cv::FONT_HERSHEY_SIMPLEX);
}
std::stringstream fpsStr;
fpsStr << std::fixed << std::setprecision(2) << fps;
cv::putText(rectifiedRight, fpsStr.str(), cv::Point(2, rectifiedRight.rows - 4), cv::FONT_HERSHEY_TRIPLEX, 0.4, color);
cv::imshow("depth", depthFrameColor);
cv::imshow("rectified right", rectifiedRight);
int key = cv::waitKey(1);
if(key == 'q' || key == 'Q') {
return 0;
}
}
return 0;
}
|